В.М. Тихомиров - Вариационное исчисление и оптимальное управление (1156154), страница 2
Текст из файла (страница 2)
®£¤ ∈ D1 (x¥®à¥¬ 1V → IR, fb) = 0.f ′ (xDZãáâìb, IRn ), fV ∈ O(x:(1)1. DZãáâì x | ¯à®¨§¢®«ìë© ¢¥ªâ®à ¨§ IRn . DZ®«®¨¬ g(α) = g(α; x) = f (xb + αx) § â¥®à¥¬ë ® á㯥௮§¨æ¨¨ á«¥¤ã¥â, çâ®b) · x. 2. § ®¯à¥¤¥«¥¨ï 1 á«¥¤ã¥â, çâ® g ¨¬¥g ∈ D1 (0) ¨ g′ (0) = f ′ (x¥â «®ª «ìë© íªáâ६㬠¢ ã«¥.
®£¤ ¨§ â¥®à¥¬ë ¥à¬ ¤«ï ®¤®£®¯¥à¥¬¥®£® ¯®«ãç ¥¬, çâ®®ª § ⥫ìá⢮.0 = g′ (0; x) = f ′(xb) · x.¢¨¤ã ¯à®¨§¢®«ì®á⨠x ®âáî¤ á«¥¤ã¥â, çâ® f ′(xb) = 0.⊓⊔8DZਬ¥à 1.DZãáâì A = (aij )1≤i,j≤n | ᨬ¬¥âp¨ç ï (â. ¥. aij = aji¯®«®¨â¥«ì® ®¯p¥¤¥«¥ ï (â. ¥. xT Ax > 0 ∀x 6= 0) ¬ âp¨æ , b ∈(IRn )′ , c ∈ IR. § ¤ ç¥ ¡¥§ ®£à ¨ç¥¨© f (x) = xT · Ax + 2b · x + c → mináâ æ¨® à ï â®çª ®¤ : xb = −A−1 b. O ¤®áâ ¢«ï¥â ¡á®«îâ멬¨¨¬ã¬, à ¢ë© −A−1 b + c.1.2.©«¥à.
DZà®á⥩è ï § ¤ ç ¢ ਠ樮®£®¨áç¨á«¥¨ïDZãáâìL⥣p ⮬.= L(t, x, u) | äãªæ¨ï âpñå ¯¥p¥¬¥ëå, §ë¢ ¥¬ ï ¤ ç J (x(·)) =Zt1t0L(t, x(t), x_ (t))dt → extr, x(t0 ) = x0 , x(t1 ) = x1 .¨-(P2 ) §ë¢ ¥âáï ¯à®á⥩襩 § ¤ 祩 ¢ ਠ樮®£® ¨áç¨á«¥¨ï á § ªà¥¯«ñ묨 ª®æ ¬¨. ¤¥áì ¬ë 㯮âॡ¨«¨ « £à ¥¢ë ®¡®§ 票ï, ª®£¤ ¥§ ¢¨á¨¬®¥ ¯¥à¥¬¥®¥ ®¡®§ ç ¥âáï ç¥à¥§ t, ä §®¢®¥ ¯¥à¥¬¥®¥ |ç¥à¥§ x (¢ ®â«¨ç¨¥ ®â í©«¥p®¢ëå, ª®£¤ ¥§ ¢¨á¨¬®¥ ¯¥p¥¬¥®¥ | x, § ¢¨á¨¬®¥ | y ; § ¤ ç ® ¡à å¨áâ®å஥ ¢ëè¥ ¡ë« ä®à¬ «¨§®¢ ¢í©«¥à®¢ëå ®¡®§ 票ïå). ¤ ç ® ¡à å¨áâ®å஥ ¤®áâ ¢«ï¥â ¯p¨¬¥p ¯p®á⥩襩 § ¤ ç¨ ¢ p¨ 樮®£® ¨áç¨á«¥¨ï á § ªp¥¯«ñ묨 ª®æ ¬¨.
ñ ä®à¬ «¨§ æ¨ï ¢« £à ¥¢ëå ®¡®§ 票ïå ¢ë£«ï¤¨â â ª:Z t1 √1 + x_ 2√dt → min, x(0) = 0, x(t1 ) = x1 .x0 ¤ çã (P2 ) ¡ã¤¥¬ à áᬠâਢ âì ¢ ¯à®áâà á⢥ C 1 ([t0 , t1 ℄) ¥¯à¥àë¢o-¤¨ää¥à¥æ¨à㥬ëå äãªæ¨© [t0 , t1 ℄ á ®à¬®©kx(·)kC 1 ([t0 ,t1 ℄)= max |x_ (t)| + max |x(t)|.t∈[t0 ,t1 ℄t∈[t0 ,t1 ℄ãªæ¨ï x(·) ∈ C 1 ([t0 , t1 ℄) ¤®¯ãá⨬ ¢ (P2 ), ¥á«¨ ® 㤮¢«¥â¢®àï¥â£à ¨çë¬ ãá«®¢¨ï¬.®ª «ìë© íªáâ६㬠¢ ¯à®áâà á⢥ C 1 ([t0 , t1 ℄) §ë¢ ¥âáï á« ¡ë¬«®ª «ìë¬ íªáâ६㬮¬, ¨«¨ ¯®¤à®¡¥¥:b(·) §ë¢ ¥âáï á« ¡ë¬¯à¥¤¥«¥¨¥ 2. ®¯ãá⨬ ï ¢ (P2 ) äãªæ¨ï xíªáâ६㬮¬, ¥á«¨ ¤«ï ¥ª®â®à®£® ε > 0 ¨ «î¡®© ¤®¯ãá⨬®© äãªæ¨¨x(·) â ª®©, çâ®b(·)kC 1 ([t0 ,t1 ℄) < ε,kx(·) − x91.
¨¬¥¥â ¬¥áâ® ¥à ¢¥á⢮: J (x(·)) ≥b(·)) ¢ á«ãç ¥ ¬ ªá¨¬ã¬ .J (x(·)) ≤ J (xb(·))J (x¢ á«ãç ¥ ¬¨¨¬ã¬ ¨ ¯®¬¨ ¨¥. «¨§¥ ¤®ª §ë¢ ¥âáï â ª®© १ã«ìâ â ® ¤¨ää¥à¥æ¨à®¢ ¨¨ ¨â¥£à « , § ¢¨áï饣® ®â ¯ à ¬¥âà : ¯ãáâì xb(·) ∈b(t), a ≤C ([a, b℄), V | ®ªà¥áâ®áâì ¬®¥á⢠{(t, x, α)|a ≤ t ≤ b, x = xt ≤ b}, α ∈ [−δ, δ℄ ⊂ IR3 ¨ F : V → IR, ¯à¨çñ¬ RF ¥¯à¥à뢮bb(t), α)dt¤¨ää¥à¥æ¨à㥬 ï äãªæ¨ï ¢ V .
®£¤ äãªæ¨ï α 7→ a F (t, xRb′b(t), 0)dt.¤¨ää¥à¥æ¨à㥬 ¢ ã«¥ ¨ g (0) = a Fx (t, x(ãp ¢¥¨¥ ©«¥p ). DZãáâì äãªæ¨ï xb(·) ¤®¯ãá⨬ ¢ § b(t), xb_ (t)) |¤ ç¥ (P2 ), L, Lx , Lx_ , ¥¯à¥àë¢ë ¢ ®ªà¥áâ®á⨠ªà¨¢®© {(t, xb(·) ï¥âáï «®ª «ìë¬ ¬¨¨¬ã¬®¬ ¢ § ¤ t ∈ [t0 , t1 ℄}. ®£¤ , ¥á«¨ xbç¥ (P2 ), â® äãªæ¨ï Lx_ (·) ¥¯p¥p뢮-¤¨ää¥p¥æ¨p㥬 ¨ ¢ë¯®«¥®¥®à¥¬ 2ãp ¢¥¨¥ ©«¥p −d bb x (t) = 0.Lx_ (t) + Ldt(2)ëè¥ ã¯®âp¥¡«¥ë ᮪p éñë¥ ®¡®§ 票ï: Lb x_ (t) = Lx_ (t, xb(t), xb_ (t)),b x (t) = Lx (t, xb(t), xb_ (t)). «®£¨çë¥ á®ªp é¥¨ï ¯p¨¬¥ïîâáï ¨ ¤ L«¥¥.¥è¥¨ï ãà ¢¥¨ï ©«¥à §ë¢ îâáï íªáâ६ «ï¬¨. ç «ì ï ç áâì ¤®ª § ⥫ìá⢠¯à®å®¤¨â ¯® á奬¥¤®ª § ⥫ìá⢠⥮६ë 1.1. DZãáâì x(·) | ¯à®¨§¢®«ì ï äãªæ¨ï ¨§ C 1 ([t0 , t1 ℄), ¨ u(·) | ¯à®¨§¢®¤ ï äãªæ¨¨ x(·).¡®§ 稬 ç¥à¥§ xα (·) = xb(·) + αx(·R). ãªæ¨ï xα (·) ¤®¯ãá⨬ ¢§ ¤ ç¥ (P2 ) ⮣¤ ¨ ⮫쪮 ⮣¤ , ª®£¤ tt01 u(t)dt = 0.DZ®«®¨¬®ª § ⥫ìá⢮.g(α) = g(α; x(·))= J (xb(·) + αx(·)) =Zt1t0b_ (t) + αx_ (t))dt.b(t) + αx(t), xL(t, x§ ⥮६ ® ¤¨ää¥à¥æ¨à®¢ ¨¨ ¯®¤ § ª®¬ ¨â¥£à « ¨ ¯à®¨§¢®¤®©á㯥௮§¨æ¨¨ á«¥¤ã¥â, çâ® g ∈ D1 (0) ¨g (0) =′Zt1t0(Lb x (t)x(t) + Lb x_ (t)u(t))dt.2.
§ ®¯à¥¤¥«¥¨ï 2 á«¥¤ã¥â, çâ® g ¨¬¥¥â «®ª «ìë© íªáâ६㬠¢ã«¥. ®£¤ ¨§ â¥®à¥¬ë ¥à¬ ¤«ï ®¤®£® ¯¥à¥¬¥®£® ¯®«ãç ¥¬, çâ®100 = g′ (0) = tt01 (Lb x (t)x(t) + Lb x_ (t)u(t))dt, ¥á«¨ tt01 u(t)dt = 0 (i).3. ¬¥ïï ⥯¥pì ¢ (i) äãªæ¨î Lb x (t) äãªæ¨¥© p0 (·),R®¯p¥¤¥«ï¥¬®©á®®â®è¥¨ï¬¨ p_0 (t) = Lb x (t), p0 (t1 ) = 0 (â. ¥. p0 (t) = tt1 Lb x (τ )dτ ), ¨¨â¥£à¨àãï ¯® ç áâï¬, ¯®«ã稬:RZt1t0R(Lb x_ (t) − p0 (t))u(t)dt=0∀u(·) ∈ C ([t0 , t1 ℄),Zt1t0u(t)dt = 0.(ii)4. DZãáâì c | ç¨á«®, ¢ë¡à ®¥ â ª, ç⮡ë tt01 (Lb x_ (t) −p0 (t) −c)dt = 0.DZ®¤áâ ¢«ïï ⥯¥pì ¢ (ii) ¢¬¥áâ® u(·) äãªæ¨î Lb x_ (·) − p0 (·) − c, ¯à¨å®¤¨¬ ª à ¢¥áâ¢ã p0 (t) + c = Lb x_ (·), ¨ íâ® ¯p¨¢®¤¨â ª á®®â®è¥¨ï¬ (2),⊓⊔çâ® ¨ âॡ®¢ «®áì.Ráâ®à¨ç¥áª¨© ª®¬¬¥â ਩.
®¯à®á ® ⮬, ª ª à¥è âì § ¤ ç¨, áå®¤ë¥ á ¡à å¨áâ®åந©, ®£ ¥àã««¨ ¯®áâ ¢¨« ᢮¥¬ã ã票ªã ¥® à¤ã ©«¥àã. DZ¥à¢ë¥ ¢ ਠâë ⥮६ë 2 ©«¥à ¯®«ã稫 ¢ 1728 £®¤ã.DZਬ¥à 2.à¥): ©¤ñ¬ íªáâ६ «¨ ¢ § ¤ ç¥ (® £ ମ¨ç¥áª®¬ ®á樫«ïâ®ZT(x_ 2 (t) − x2 (t))dt → min, x(0) = x(T ) = 0.0à ¢¥¨¥ ©«¥à §¤¥áì x + x = 0.
®¯ãá⨬묨 íªáâ६ «ï¬¨ ¢ ¤ ®© § ¤ ç¥ ï¢«ïîâáï: ⮤¥áâ¢¥ë© ã«ì, ¥á«¨ T 6= kπ, k ∈ IN ¨t 7→ C sin t, C ∈ IR, ¥á«¨ T = kπ, k ∈ IN. «¥¥ ¬ë ¡ã¤¥¬ ¥®¤®ªà ⮢®§¢à é âìáï ª í⮬㠯ਬ¥àã; ¢ ç áâ®áâ¨, ¡ã¤¥â ®¯à¥¤¥«ñ å à ªâà¥àíªáâ६㬠¢ ñ¬.1.3. £à . ¤ ç¨ á ®£à ¨ç¥¨ï¬¨ ⨯ à ¢¥áâ¢.®® ¢ë᪠§ âì á«¥¤ãî騩 ®¡é¨© ¯à¨æ¨¯. ᫨ ¨é¥âáï ¬ ªá¨¬ã¬ ¨«¨ ¬¨¨¬ã¬ ¥ª®â®à®© äãªæ¨¨ ¬®£¨å ¯¥à¥¬¥ëå ¯à¨ ãá«®¢¨¨, çâ® ¬¥¤ã í⨬¨ ¯¥à¥¬¥ë¬¨ ¨¬¥¥âáï á¢ï§ì, § ¤ ¢ ¥¬ ï ®¤¨¬ ¨«¨ ¥áª®«ìª¨¬¨ ãà ¢¥¨ï¬¨, ã® ¯à¨¡ ¢¨âì ª äãªæ¨¨, ® ª®â®à®© £®¢®à¨«®áì,äãªæ¨¨, § ¤ î騥 ãà ¢¥¨ï á¢ï§¨, 㬮¥ë¥ ¥®¯à¥¤¥«ñë¥ ¬®¨â¥«¨, ¨ ¨áª âì § ⥬ ¬ ªá¨¬ã¬ ¨ ¬¨¨¬ã¬ ¯®áâ஥®© á㬬ë, ª ª ¥á«¨ ¡ë ¯¥à¥¬¥ë¥ ¡ë«¨ ¥§ ¢¨á¨¬ë.
DZ®«ãç¥ë¥ ãà ¢¥¨ï, ¯à¨á®¥¤¨ñë¥ ª ãà ¢¥¨ï¬ á¢ï§¨, ¯®á«ã â ¤«ï ®¯à¥¤¥«¥¨ï ¢á¥å ¥¨§¢¥áâëå.. £p (1797)111. DZãáâì ¤ ç V| ®ªà¥áâ®áâì â®çª¨b ∈xIRn ¨f0 (x) → extr, fi (x) = 0,fi:V →1≤i≤mIR, 0≤ i ≤ m.(P3 ) §ë¢ ¥âáï § ¤ 祩 á ®£à ¨ç¥¨ï¬¨ ⨯ à ¢¥á⢠(¢ IRn ).¥ªâ®à x ¤«ï ª®â®à®£® fi(x) = 0, 1 ≤ i ≤ m §ë¢ ¥âáï ¤®¯ãáâ¨¬ë¬ ¢ (P3 ). ®¯ãáâ¨¬ë© ¢¥ªâ®à xb â ª®©, çâ® áãé¥áâ¢ã¥â ç¨á«® ε > 0, ¤«ï ª®â®à®£® f0 (x) ≥ f0 (xb) (f0 (x) ≤ f0 (xb)) ¤«ï ¢á¥å¤®¯ãá⨬ëå ¢¥ªâ®à®¢ x ᮠ᢮©á⢮¬ |x − xb| < ε, §ë¢ ¥âáï «®ª «ìë¬ ¬¨¨¬ã¬®¬ (¬ ªá¨¬ã¬®¬) ¢ § ¤ ç¥ (P3 ).
DZਠí⮬ ¡ã¤¥¬ ¯¨á âìlomin(P3 ) (lomax(P3 )).¯à¥¤¥«¥¨¥ 3.Pãªæ¨î L(x, λ) = mi=0 λi fi (x), £¤¥ λ = (λ0 , . . . , λm ) §ë¢ îâ äãªæ¨¥© £à (P3 ), ç¨á« λi , 0 ≤ i ≤ m §ë¢ îâáï ¬®¨â¥«ï¬¨m+1 ′) (λ = (λ0 , . . . , λm )) ¡ã¤¥¬ £à § ¤ ç¨ (P3 ). ¥ªâ®à λ ∈ (IR §ë¢ âì ¢¥ªâ®à®¬ ¬®¨â¥«¥© £à .DZp¨ ¤®ª § ⥫ìá⢥ ¥®¡å®¤¨¬®£® ãá«®¢¨ï íªáâp¥¬ã¬ ¢ § ¤ ç¥ (P3 )¬ë ¨á¯®«ì§ã¥¬ § ¬¥ç ⥫ìãî ⥮p¥¬ã . p ãíp ® ¥¯®¤¢¨®© â®çª¥: ¯p¨ ¥¯p¥p뢮¬ ®â®¡p ¥¨¨ n-¬¥p®£® è p ¢ ᥡï áãé¥áâ¢ã¥â¥¯®¤¢¨ ï â®çª .(DZà ¢¨«® ¬®¨â¥«¥© £à ).
DZãáâìIR, 0 ≤ i ≤ m ¯à¨ ¤«¥ â D1 (xb). ᫨¥®à¥¬ 3fi:V →⮣¤ áãé¥áâ¢ã¥â ¥ã«¥¢®© ¡®à ¬®¨â¥«¥©çâ®b, λ) = 0Lx (xmXb, IRn ),V ∈ O(xb ∈ loextr(P3 ),x £à λ â ª®©,(3)=0ãâì í⮣® १ã«ìâ â § ¬¥ç â¥«ì® ¢ëà §¨« £à ¢ ¯à¨¢¥¤ñ®¬¢ëè¥ í¯¨£à ä¥.®ª § ⥫ìá⢮.0 ¨ f0 (0) = 0.⇔ib) = 0.λi fi′ (x¥§ ®£à ¨ç¥¨ï ®¡é®á⨠¬®® áç¨â âì, çâ® xb =f0 (x)..
n. . ¬¥¥âáï «ìâ¥à ⨢ : a) F ′ (0)IR 6=fm (x)IRm+1 ¨ b) F ′ (0)IRn = IRm+1 . ¯¥à¢®¬ á«ãç ¥ ¢¥ªâ®àë fi′ (0), 0 ≤ i ≤ n«¨¥©® § ¢¨á¨¬ë ¨ § ç¨â á¯à ¢¥¤«¨¢® (3).DZ®ª ¥¬, çâ® b) ¢¥¤ñâ ª ¯à®â¨¢®à¥ç¨î.1. DZãáâì F (x) = 12′2. ©¤ñ¬ ¢¥ªâ®àë {fi }mi=0 â ª¨¥, çâ® F (0)fi = ei , 0 ≤ i ≤ m (£¤¥m+1{ei }m) ¨ ¯®áâந¬P\¯à ¢®¥ ®¡à ⮥"P®â®¡à i=0 ¥ª®â®àë© ¡ §¨á ¢ IRmm+1n¥¨¥ R : IR→ IR , ¯®«®¨¢ (¤«ï y = mi=0 yi ei )) R(y ) =i=0 yi fi .′ਢ¨ «ì® ¯®ª §ë¢ ¥âáï, çâ® F (0)R(y ) = y ¨ |R(y )| ≤ C|y| ∀y ∈IRm+1 . âªã¤ á«¥¤ã¥â, çâ® G(y ) = F (R(y )) = y + ρ(y ), ρ(y ) =o(y ). −δ/2 0 |y|3.
DZãáâì δ > 0 â ª®¢®, çâ® |y −G(y )| ≤ 2 . DZ® ¢¥ªâ®àã η = .. . 0¯®áâந¬ ®â®¡à ¥¨¥ η : B (0, δ) → IRm+1 , £¤¥ B (0, δ) = {y ∈ IRm ||y| ≤ δ : η (y ) = η +y−G(y )}. ¬¥¥¬: |η (y )| ≤ |η|+|y−G(y )| ≤ δ, â. ¥. η| ¥¯à¥à뢮¥ ®â®¡à ¥¨¥ è à B (0, δ) ¢ ᥡï. § ⥮६ë à ãíà ® ¥¯®¤¢¨®© â®çª¥ á«¥¤ã¥â, çâ® áãé¥áâ¢ã¥â ¢¥ªâ®à y, ¤«ï ª®â®à®£®y = η (y ) ⇒ F (R(y )) = G(y ) = η .
ª¨¬ ®¡à §®¬, ¯®áâ஥ â®çª R(η ) (¢¡«¨§¨ 0 ∈ IRn ) â ª ï, çâ® f0 (R(y )) < 0, fi (R(y )) = 0, 1 ≤ i ≤ m,â. e. 0 ∈/ lomin(P3 ). DZà®â¨¢®à¥ç¨¥ ¤®ª §ë¢ î饥 ⥮६ã.⊓⊔áâ®à¨ç¥áª¨© ª®¬¥â ਩. DZà¨æ¨¯ à¥è¥¨ï § ¤ ç á ®£à ¨ç¥¨ï¬¨, ¢ëà ¥ë© ¢ ¯à¨¢¥¤ñ®¬ ¬¨ í¯¨£à ä¥, ¡ë« ®¯ã¡«¨ª®¢ ¢ ¬®®£à 䨨 £à , ¢ë襤襩 ¢ ᢥ⠢ 1797 £®¤ã. p ãíp ¤®ª § «á¢®î ⥮p¥¬ã ¢ 1913 £®¤ã.®®â®è¥¨¥ (3) ¬ë §ë¢ ¥¬ ãá«®¢¨¥¬ áâ æ¨® à®áâ¨. ⢥थ¨¥ ⥮६ë 3 ¬®® ¢ëà §¨âì â ª¨¬¨ á«®¢ ¬¨: ¥á«¨ (¯à¨ áä®à¬ã«¨à®¢ ëå ¢ ⥮६¥ ãá«®¢¨ïå)§ ¤ ç¥bx¤®áâ ¢«ï¥â «®ª «ìë© íªáâ६ã¬(P3 ), â® ¢ë¯®«¥® ãá«®¢¨¥ áâ æ¨® à®áâ¨, á®áâ®ï襥 ¢ ⮬,b) ∈ (IRn )′ , 0 ≤ i ≤ m} «¨¥©® § ¢¨á¨¬ë.{fi′ (xçâ® ¢¥ªâ®àëDZਬ¥à 3.f0 (x1 , .
. . , xn ) =nXaij xi xj → max, f1 (x1 , . . . , xn ) =nXx2i − 1 = 0.i=1=1DZ¥à¥¯¨è¥¬ íâ®â ¯à¨¬¥à, ¨á¯®«ì§ãï è¨ á®ªà éñë¥ ®¡®§ 票ï:xT Ax → max, xT · x = 1, x ∈ IRn .¤¥áì A | «¨¥©ë© ®¯¥à â®à ¨§ IRn ¢ IRn , § ¤ ¢ ¥¬ë© ᨬ¬¥âà¨ç¥áª®©¬ âà¨æ¥© (aij )ni,j =1, aij = aji.a©¤ñ¬ ¢¥ªâ®àë, 㤮¢«¥â¢®àïî騥 ãá«®¢¨î áâ æ¨® à®áâ¨. ãªæ¨ï £à §¤¥áì L(x, λ0 , λ1 ) = λ0 xT · Ax + λ1 xT · x. á«®¢¨ï áâ æ¨® à®áâ¨: Lx(x, λ0 , λ1 ) = 0 ⇔ λ0 Ax + λ1 x = 0. 祢¨¤®, çâ® λ0 6= 0.i,j131.
ë ¯®«ã稫¨, çâ® ãá«®¢¨î áâ æ¨® à®á⨠㤮¢«¥â¢®àïîâ ᮡáâ¢¥ë¥ ¢¥ªâ®àë ®¯¥à â®à A.1.4.• ¤ ç £à . à ¢¥¨ï ©«¥à - £à . £à áâ « ¯à¨¬¥ïâì ª § ¤ ç ¬ ¢ ਠ樮®£® ¨áç¨á«¥¨ïâ®â ¥ ¯à¨ñ¬, çâ® ¡ë« ®¯¨á ¢ ¯à¨¢¥¤ñ®¬ ¢ ¯. 1.3 í¯¨£à ä¥.®à®âª® ¢ëà §¨¬ ¥£® â ª: ¤«ï à¥è¥¨ï § ¤ ç¨ íªáâ६㬠áà ¢¥á⢠¬¨ ¤® á®áâ ¢¨âì äãªæ¨î £à ¨ ¢ë¯¨á âì ¤«ï¥ñ ¥®¡å®¤¨¬®¥ ãá«®¢¨¥ íªáâ६㬠, ª ª ¡ã¤â® ¯¥à¥¬¥ë¥ ¥§ ¢¨á¨¬ë.¯¨áë¢ ¥¬ë© ¢ í⮬ ¯ãªâ¥ ª« áá § ¤ ç ¢ ਠ樮®£® ¨áç¨á«¥¨ï ®å¢ âë¢ ¥â ¤®áâ â®ç® è¨à®ª¨© ªp㣠§ ¤ ç ¬¥å ¨ª¨, 䨧¨ª¨, £¥®¬¥âਨ ¨ ¤àã£¨å ®¡« á⥩, £¤¥ ¢®§¨ª îâ íªáâ६ «ì륧 ¤ ç¨.DZãáâì f : [t0 , t1 ℄ × IRn × IRr → IR (f = f (t, x, u)) | äãªæ¨ï n + r + 1¯¥à¥¬¥®£®, (ϕ = ϕ(t, x, u)) | ®â®¡à ¥¨¥ ¯à®áâà á⢠IRn+r+1 ¢ IRn(¯¥à¥¬¥ë¥ (t, x, u) â ª®¢ë: t ∈ [t0 , t1 ℄, x ∈ IRn , u ∈ IRr ). ¤ ç J (x(·), u(·))=Zt1t0f (t, x(t), u(t))dt → extr,x_ = ϕ(t, x, u),x(ti ) = xi , i = 0, 1(P4 ) §ë¢ ¥âáï § ¤ 祩 £à (áR § ªà¥¯«ñ묨 ª®æ ¬¨).ãªæ¨î L((x(·), u(·)), λ) = tt01 L(t, x(t), x_ (t), u(t))dt, £¤¥ ¨â¥£à ⨬¥¥â ¢¨¤:L(t, x, x,_ u) = λ0 f (t, x, u) + p(t) · (x_ − ϕ(t, x, u)) §®¢ñ¬ äãªæ¨¥© £p § ¤ ç¨ (P4 ).