Диссертация (1155084), страница 5
Текст из файла (страница 5)
Ïîëîæèì dk = k + 1. Òàêèì îáðàçîì, óñëîâèÿÒåîðåì 10, 11 âûïîëíÿþòñÿ ïðè β∗ ≥ 1, W = 1, β∗∗ ≥ 0.5 ñîîòâåòñòâåííî, è ìûèìååì ñëåäóþùèå îöåíêè ñêîðîñòè ñõîäèìîñòè:kp∗ (t) − p∗∗ (t)k ≤ 2e−t ,(2.2.38)35ïðè ëþáûõ íà÷àëüíûõ óñëîâèÿõ p (0), p∗∗ (0) è∗|E(t, j) − E(t, 0)| ≤ (1 + j) e−0.5t ,äëÿ ëþáîãî íà÷àëüíîãî óñëîâèÿ j è ëþáîãî t ≥ 0.(2.2.39)36Ãëàâà 3Àïïðîêñèìàöèÿ íåêîòîðûõ êîíå÷íûõìîäåëåé ìàññîâîãî îáñëóæèâàíèÿ3.1Ñèñòåìà ìàññîâîãî îáñëóæèâàíèÿ ñ ãðóïïîâûì ïîñòóïëåíèåì è ãðóïïîâûì îáñëóæèâàíèåì òðåáîâàíèéÏðîáëåìà âû÷èñëåíèÿ îñíîâíûõ ïðåäåëüíûõ õàðàêòåðèñòèê äëÿ íåîäíîðîäíîãî ïðîöåññà ðîæäåíèÿ è ãèáåëè ÷åðåç óñå÷åíèÿ áûëà âïåðâûå óïîìÿíóòàâ [11] è äåòàëüíî ðàññìîòðåíà â [84].
 [92] áûëà èññëåäîâàíà ðàâíîìåðíàÿ (ïîâðåìåíè) ïîãðåøíîñòü àïïðîêñèìàöèè óñå÷åíèÿìè äëÿ ýòîãî êëàññà ìàðêîâñêèõöåïåé.Îñíîâíûå èññëåäîâàíèÿ ðàâíîìåðíîé àïïðîêñèìàöèè óñå÷åíèÿìè äëÿíåîäíîðîäíûõ ìîäåëåé ìàññîâîãî îáñëóæèâàíèÿ ñ ãðóïïîâûì ïîñòóïëåíèåì èãðóïïîâûì îáñëóæèâàíèåì òðåáîâàíèé áûëè ïðîâåäåíû â [69, 87, 89] . äàííîì ðàçäåëå äåòàëüíî èññëåäóåòñÿ ìîäåëü ìàññîâîãî îáñëóæèâàíèÿñ ãðóïïîâûì ïîñòóïëåíèåì è ãðóïïîâûì îáñëóæèâàíèåì òðåáîâàíèé, ÷àñòíûéñëó÷àé êîòîðîé ðàññìîòðåí â 1 ãëàâû 2.
Ïîëó÷åíû îöåíêè ðàâíîìåðíîé àïïðîêñèìàöèè è ïðèâåäåíû ïðèìåðû.3.1.1Ââåäåíèå è îñíîâíûå ïîíÿòèÿÐàññìîòðèì ìàðêîâñêóþ ìîäåëü ìàññîâîãî îáñëóæèâàíèÿ ñ íåïðåðûâíûìâðåìåíåì, ïðîñòðàíñòâîì ñîñòîÿíèé E = {0, 1, . . . , r} è ñ ãðóïïîâûì ïîñòóïëå-37íèåì è ãðóïïîâûì îáñëóæèâàíèåì òðåáîâàíèé. Ïîëàãàåì, ÷òîqi,i+k (t) = λk (t), qi,i−k (t) = µk (t),äëÿ ëþáîãî k > 0. Èíòåíñèâíîñòü ïîñòóïëåíèÿ λk (t) è èíòåíñèâíîñòü îáñëóæèâàíèÿ µk (t) íå çàâèñÿò îò äëèíû î÷åðåäè.
 äîïîëíåíèå λk+1 (t) ≤ λk (t) èµk+1 (t) ≤ µk (t) äëÿ ëþáîãî k è ïî÷òè âñåõ t ≥ 0. Êðîìå òîãî,λk (t) ≤ λk ,(3.1.1)µk (t) ≤ µk ,äëÿ ëþáîãî k è ïî÷òè âñåõ t ≥ 0, ïîëîæèìLλ =rXλi ,Lµ =rXi=1(3.1.2)µi .i=1Âåðîÿòíîñòíàÿ äèíàìèêà îïèñûâàåòñÿ ñèñòåìîé Êîëìîãîðîâàdp= A(t)p(t),dt(3.1.3)ãäåa00 (t)µ1 (t)µ2 (t)···µr (t) λ1 (t) a11 (t) µ1 (t) · · · µr−1 (t)A(t) = λ2 (t) λ1 (t) a22 (t) · · · µr−2 (t) ···λr (t) λr−1 (t) λr−2 (t) · · · arr (t)PiPr−iè aii (t) = − k=1 µk (t) − k=1 λk (t).,(3.1.4)383.1.2ÀïïðîêñèìàöèÿÐàññìîòðèì óñå÷åííûé ïðîöåññ XN −1 (t), ïóñòü EN −1 = {0, 1, .
. . , N − 1}ñîîòâåòñòâóþùåå ïðîñòðàíñòâî ñîñòîÿíèé èAN −1b00µ1µ3 · · ·µ2µN −1 λ1b11µ1 µ2 · · · µN −2= λ2λ1b22 µ1 · · · µN −3 ···λN −1 λN −2 λN −3 · · · λ1 bN −1,N −1ìàòðèöà èíòåíñèâíîñòåé, ãäå bii (t) = −Pik=1 µk (t) −PN −1−ik=1−(3.1.5)λk (t).Òàêèì îáðàçîì, âìåñòî (3.1.3), äëÿ XN −1 (t) ìû ïîëó÷àåì ñëåäóþùóþ ñèñòåìó Êîëìîãîðîâà:dpN −1= AN −1 (t)pN −1 .dtPÏîëàãàÿ p0 (t) = 1 − i≥1 pi (t), èç (3.1.3) ïîëó÷àåì óðàâíåíèådz= B(t)z(t) + f (t),dt>(3.1.6)(3.1.7)>ãäå f (t) = (λ1 , λ2 , · · · , λr ) , z(t) = (p1 , p2 , · · · , pr ) ,a11 − λ1 µ1 − λ1 λ1 − λ2 a22 − λ2rB = bij (t)i,j=1 = λ2 − λ3λ1 − λ3···λr−1 − λr λr−2 − λr· · · µr−1 − λ1· · · µr−2 − λ2 · · · µr−3 − λ3 .· · · arr − λr(3.1.8)Àíàëîãè÷íî, âìåñòî (3.1.7), ïîëó÷àåì ñîîòâåòñòâóþùóþ ñèñòåìó äëÿ óñå÷åííîãî ïðîöåññà:dzN −1= BN −1 (t)zN −1 (t) + fN −1 (t),dt(3.1.9)39>>ãäå fN −1 (t) = (λ1 , · · · , λN −1 ) , zN −1 (t) = (p1 , p2 , · · · , pN −1 ) ,−1BN −1 = (bij ∗ (t))Ni,j=1b11 − λ1µ 1 − λ1···µN −1 − λ1=λ1 − λ2b22 − λ2···µN −2 − λ2λ2 − λ3λ1 − λ3···µN −3 − λ3.···λN −2 − λN −1 λN −3 − λN −1 · · · bN −1,N −1 − λN −1(3.1.10)ÐàññìîòðèìdzN −1= BN −1 (t)zN −1 (t) + f (t),dt(3.1.11)Îòìåòèì, ÷òî ðåøåíèå ñèñòåìû (3.1.9) è ñîîòâåòñòâóþùåå ðåøåíèå(3.1.11) ñ íà÷àëüíûì óñëîâèåì p0 (0) = 1 ñîâïàäàþò.
Äàëåå ìû îòîæäåñòâëÿåìâåêòîð (a1 , . . . , aN −1 )> è r-ìåðíûé âåêòîð ñ òåìè æå ïåðâûìè N − 1 êîîðäèíàòàìè, è îñòàëüíûìè - ðàâíûìè íóëþ.Ðàññìîòðèì {di }, i = 1, 2, . . . - âîçðàñòàþùóþ ïîñëåäîâàòåëüíîñòü ïîëîæèòåëüíûõ ÷èñåë, d1 = 1, èPiW = mini≥1k=1 dki,gi =iX(3.1.12)dn .n=1Ïîëîæèìαi (t) = −aii (t) + λr−i+1 (t) −r−iXk≥1i−1dk+1 Xdk(λk (t) − λr−i+1 (t))−(µi−k (t) − µi (t)) ,didik=1(3.1.13)α(t) = min αi (t).i≥1Ðàññìîòðèì D - âåðõíþþ òðåóãîëüíóþ ìàòðèöó,d1d1d1 · · · d1 0 d2 d2 · · ·D = 0 0 d3 · · · ··· ··· ··· ···0 0 0 ···d2 d3 ,··· dr(3.1.14)40è ïóñòü k • k1D ñîîòâåòñòâóþùàÿ íîðìà kzk1D = kDzk1 .ÒîãäàkV (t, s)k ≤ eRtsγ(B(u)) duñïðàâåäëèâî, ãäå V (t, s) = V (t)V −1 (s) - ìàòðèöà Êîøè äëÿ (3.1.7), è γ(B(t))- ëîãàðèôìè÷åñêàÿ íîðìà ìàòðèöû B(t).
Èìååì ñëåäóþùóþ îöåíêó äëÿ ëîãàðèôìè÷åñêîé íîðìû B(t):γ(B(t))1D = γ(DB(t)D−1 ) = sup{−αi (t)} = −α(t),i≥1ãäåDBD−1a11 − λr(µ1 −µ2 ) dd21· · · (µr−1 −µr ) dd1r (λ1 − λr ) dd21a22 − λr−1· · · (µr−2 −µr ) dd2r=············(λr−1 − λr ) dd1r (λr−2 − λr−1 ) dd2r · · ·arr − λ1.(3.1.15)Òàêèì îáðàçîì,kV (t, s)k1D ≤ e−Rtsα(u) du(3.1.16).Ïóñòü òåïåðü {di } è {d∗i } - äâå âîçðàñòàþùèå ïîñëåäîâàòåëüíîñòè òàêèå,÷òî d1 = d∗1 = 1, âñå di < d∗i , i ≥ 2, è ñïðàâåäëèâî:kV (t, s)k1D ≤ M e−a(t−s)(3.1.17)è∗kV (t, s)k1D∗ ≤ M ∗ e−a(t−s),(3.1.18)äëÿ ëþáûõ 0 ≤ s ≤ t, è íåêîòîðûõ ïîëîæèòåëüíûõ M, M ∗ , a, a∗ .∗Ïóñòü KN- ïîëîæèòåëüíîå ÷èñëî, òàêîå, ÷òîd∗1 λ1 + (d∗1 + d∗2 )λ2 + · · · + (d∗1 + · · · + d∗N −1 )λN −1 ≤ KN∗ .(3.1.19)41Ïåðåïèøåì (3.1.11) â âèäådzN −1= B(t)zN −1 (t) + f (t) − B̂(t)zN −1 (t),dt(3.1.20)ãäå B̂(t) = B(t) − BN −1 (t).
ÈìååìZtzN −1 (t) = V (t)zN −1 (0) +V (t, τ )f (τ ) dτ −0Z t−V (t, τ )B̂(τ )zN −1 (τ ) dτ.(3.1.21)0Òîãäà, åñëè z(0) = zN −1 (0) = 0, òî ìû ïîëó÷àåìZtV (t, τ )B̂(τ )zN −1 (τ ) dτ k ≤kz(t) − zN −1 (t)k ≤ k0Z t≤kV (t, τ )kkB̂(τ )zN −1 (τ )k dτ.(3.1.22)0Ñ äðóãîé ñòîðîíû,B̂(t)zN −1 (t) = (B(t) − BN −1 (t)) zN −1 (t) =((a11 (t) − b11 (t))pN −1,1 (t), · · · ,(3.1.23)(aN −1,N −1 (t) − bN −1,N −1 (t))pN −1,N −1 (t))>èkB̂(t)zN −1 (t)k1D = kD (B(t) − BN −1 (t)) zN −1 (t)k1 =d1 (b11 (t) − a11 (t))pN −1,1 (t) + (d1 + d2 )(b22 (t) − a22 (t))pN −1,2 (t) + · · · +(d1 + · · · + dN −1 )(bN −1,N −1 (t) − aN −1,N −1 (t))pN −1,N −1 (t) =XX= d1λk (t)pN −1,1 (t) + (d1 + d2 )λk (t)pN −1,2 (t) + · · · +k≥N −1k≥N −2+(d1 + · · · + dN −1 )Xk≥1λk (t)pN −1,N −1 (t).(3.1.24)42Òåïåðü îöåíèì kB̂(t)zN −1 (t)k1D .
Äëÿ íà÷àëà,kzN −1 (t)k1D∗ ≤ kV (t)k1D∗ kzN −1 (0)k1D∗ +Z t+kV (t, τ )k1D∗ kfN −1 (τ )k1D∗ dτ ≤0∗ −a∗ t≤M e(3.1.25)KN∗ M ∗,kzN −1 (0)k1D∗ +a∗∗äëÿ ïî÷òè âñåõ t ≥ 0.ïîñêîëüêó kfN −1 (t)k1D∗ ≤ KNÏîëîæèì X(0) = XN −1 (0) = 0, òîãäà zN −1 (0) = 0, òàêèì îáðàçîì,KN∗ M ∗≤,a∗kzN −1 (t)k1D∗(3.1.26)äëÿ ëþáîãî t ≥ 0.Ïóñòü äëÿ îïðåäåëåííîñòè N - íå÷åòíîå. Âñå pN −1,i (t) ≥ 0, òîãäàkzN −1 (t)k1D∗ =XpN −1,i (t)i≥1≥XiXd∗k ≥k=1N−1Xd∗i pN −1,i (t) ≥i≥ N 2−1d∗i pN −1,i (t).(3.1.27)i= N 2−1Ñ äðóãîé ñòîðîíû,Xd1λk (t)pN −1,1 (t) +k≥N −1(d1 + d2 )Xλk (t)pN −1,2 (t) + · · · +k≥N −2+(d1 + · · · + dN −1 )Xλk (t)pN −1,N −1 (t) ≤k≥1N −1≤ (d1 + · · · + d N −1 )X2k≥ N 2−1+Xλk (t)2XpN −1,k (t) +k=1λk (t) (d1 + · · · + d N −1 )pN −1, N −1 (t) + · · · +22k≥1+ (d1 + · · · + dN −1 )pN −1,N −1 (t)) .(3.1.28)43Îáîçíà÷èì ΛK =Pk≥Kλk , ãäå λk îïðåäåëåíû ÷åðåç (3.1.1). Òîãäà èç(3.1.2), (3.1.24), (3.1.27) è (3.1.28) ìû ïîëó÷àåìN −1kB̂(t)zN −1 (t)k1D ≤ g N −1 Λ N −122X2pN −1,k (t) +k=1+Lλ g N −1 pN −1, N −1 (t) + · · · + gN −1 pN −1,N −1 (t) ≤22gN −1 ∗d N −1 pN −1, N −1 (t)+≤ g N −1 Λ N −1 + Lλ ∗2222d N −1(3.1.29)2· · · + d∗N −1 pN −1,N −1 (t)) ≤ g N −1 Λ N −1 +22∗gN −1gN −1 KN M ∗,+Lλ ∗ kzN −1 (t)k1D∗ ≤ g N −1 Λ N −1 + Lλ ∗22d N −1d N −1 a∗22äëÿ ëþáîãî t ≥ 0.Íàêîíåö, èç (3.1.29) ïîëó÷àåì ñëåäóþùóþ îöåíêó àïïðîêñèìàöèè:kz(t) − zN −1 (t)k ≤!t∗∗gN −1 KN Mdτ ≤≤M e−a(t−τ ) g N −1 Λ N −1 + Lλ ∗22d N −1 a∗02!∗∗gN −1 KN MM≤g N −1 Λ N −1 + Lλ ∗.22ad N −1 a∗Z(3.1.30)2Òåïåðü ðàññìîòðèì íîðìó k • k1E : kzk1E =Pn|pn |, òîãäàkzk1E ≤ W −1 kzk1D , è ìû ïîëó÷àåì ñëåäóþùåå óòâåðæäåíèå.Ïóñòü (3.1.17) è (3.1.18) âûïîëíÿþòñÿ.
Òîãäà X(t) ñëàáî ýêñïîíåíöèàëüíî ýðãîäè÷åí, èìååò ïðåäåëüíîå ñðåäíåå E(t, 0), è ñïðàâåäëèâà ñëåäóþùàÿ îöåíêà àïïðîêñèìàöèè:Òåîðåìà 12.MgN −1 KN∗ M ∗ kp(t) − pN −1 (t)k ≤g N −1 Λ N −1 + Lλ ∗,22ad N −1 a∗2M gN −1 KN∗ M ∗ |E(t, 0) − EN −1 (t, 0)| ≤g N −1 Λ N −1 + Lλ ∗,22aWd N −1 a∗244äëÿ ëþáîãî t ≥ 0, ãäå X(0) = XN −1(0) = 0, èEN −1 (t, k) = E {XN −1 (t) |XN −1 (0) = k } ìàòåìàòè÷åñêîå îæèäàíèå óñå÷åííîãîïðîöåññà â ìîìåíò âðåìåíè t ïðè óñëîâèè XN −1(0) = k.3.1.3ÏðèìåðûÏóñòü r = 1010 , λ∗ (t) = 1 + sin(2πt), µ∗ (t) = 4 + cos(2πt), µi (t) =1.µ∗ (t)i .Ïóñòü λ1 (t) = λ∗ (t), λi (t) = 0, äëÿ i ≥ 2.Ïîëîæèì âñå dk = 1.
Òîãäà α(t) = µ∗ (t), Lλ = 2, gN −1 ≤ N , W = 1, è(3.1.17) ñïðàâåäëèâî äëÿ M = 1, a = 3.Ïóñòü òåïåðü d∗k+1 = 2k . Òîãäà ñîîòâåòñòâóþùåå α∗ (t) = µ∗ (t) − λ∗ (t), è∗= 2, d∗N −1 = 2(3.1.18) âûïîëíÿþòñÿ ïðè M ∗ = 1, a∗ = 1. Êðîìå òîãî, KN2kp(t) − pN −1 (t)k ≤4N9·2|E(t, 0) − EN −1 (t, 0)| ≤N −129·2N −12,è(3.1.31),4NN −12(3.1.32),äëÿ ëþáîãî t ≥ 0, ãäå X(0) = XN −1 (0) = 0.Òàêèì îáðàçîì, åñëè N = 41, òî ïîãðåøíîñòü óñå÷åíèÿ ìåæäó âåêòîðîìâåðîÿòíîñòåé ñîñòîÿíèé è ìàòåìàòè÷åñêèì îæèäàíèåì ïðîöåññà X(t) ìåíüøå,÷åì 2 · 10−5 .Ðèñ.
3.1: Ïåðâûé ïðèìåð, àïïðîêñèìàöèÿ ñðåäíåãî2.Ïóñòü λi (t) =E(t, 0)íà[0, 10].λ∗ (t)3i .Ïîëîæèì âñå dk = 1. Òîãäà α(t) = µ∗ (t), Lλ = 1, gN −1 ≤ N , W = 1, è(3.1.17) âûïîëíÿåòñÿ ïðè M = 1, a = 3.45Ðèñ. 3.2: Ïåðâûé ïðèìåð, àïïðîêñèìàöèÿ âåðîÿòíîñòè ïóñòîé î÷åðåäèíàPr{X(t) = 0|X(0) = 0}[0, 10].Ïóñòü òåïåðü d∗k+1 = 2k . Tîãäà α∗ (t) = µ∗ (t)−λ∗ (t), è (3.1.18) âûïîëíÿåòñÿ∗= 2, d∗N −1 = 2ïðè M ∗ = 1, a∗ = 1. Êðîìå òîãî, èìååì KNN −122kp(t) − pN −1 (t)k ≤4N9·2|E(t, 0) − EN −1 (t, 0)| ≤N −12(3.1.33),4N9·2,èN −12(3.1.34),äëÿ ëþáîãî t ≥ 0, ãäå X(0) = XN −1 (0) = 0.Òàêèì îáðàçîì, ïðè N = 41, òî ïîãðåøíîñòü óñå÷åíèÿ ìåæäó âåêòîðîìâåðîÿòíîñòåé ñîñòîÿíèé è ìàòåìàòè÷åñêèì îæèäàíèåì ïðîöåññà X(t) ìåíüøå,÷åì 2 · 10−5 .Ðèñ.
3.3: Âòîðîé ïðèìåð, àïïðîêñèìàöèÿ ñðåäíåãîE(t, 0)íà[0, 10].46Ðèñ. 3.4: Âòîðîé ïðèìåð, àïïðîêñèìàöèÿ âåðîÿòíîñòè ïóñòîé î÷åðåäèíàPr{X(t) = 0|X(0) = 0}[0, 10].3.2Íåîäíîðîäíûé ïðîöåññ ðîæäåíèÿ è ãèáåëèÏðîáëåìà ñóùåñòâîâàíèÿ è ïîñòðîåíèÿ îñíîâíûõ ïðåäåëüíûõ õàðàêòåðèñòèê äëÿ íåîäíîðîäíûõ ïðîöåññîâ ðîæäåíèÿ è ãèáåëè èìååò âàæíîå çíà÷åíèåïðè èçó÷åíèè ñèñòåì ìàññîâîãî îáñëóæèâàíèÿ (ñì., íàïðèìåð, [51, 61, 84, 86]).Îáùèé ïîäõîä è ñâÿçàííûå ñ íèì îöåíêè ñêîðîñòè ñõîäèìîñòè áûëè ðàññìîòðåíû â [83]. Âû÷èñëåíèå ïðåäåëüíûõ õàðàêòåðèñòèê ïðîöåññà ñ ïîìîùüþ óñå÷åíèéâïåðâûå áûëî ïðåäñòàâëåíî â [11] è áîëåå äåòàëüíî ðàññìîòðåíî â [84], îöåíêèïîãðåøíîñòè ðàâíîìåðíîé àïïðîêñèìàöèè áûëè ïîëó÷åíû â [92]. äàííîì ðàçäåëå ðàññìîòðåíû äâóñòîðîííèå óñå÷åíèÿ è ïðèâåäåíû ïðèìåðû äëÿ ñèñòåìû ìàññîâîãî îáñëóæèâàíèÿ, ÷èñëî òðåáîâàíèé â êîòîðîé îïèñûâàåòñÿ íåîäíîðîäíûì ïðîöåññîì ðîæäåíèÿ è ãèáåëè.