Диссертация (1155084), страница 11
Текст из файла (страница 11)
2002. IEEE CommunicationsMagazine, 40(9), 6672.81. Zeifman, A. I. Stability for contionuous-time nonhomogeneous Markov chains.Lect. Notes Math. 1985. 1155, 401414.82. Zeifman, A. I. Some estimates of the rate of convergence for birth and deathprocesses. 1991. Journal of Applied Probability, 28, 268277.83. Zeifman, A.
I. Upper and lower bounds on the rate of convergence fornonhomogeneous birth and death processes. 1995. Stoch. Proc. Appl. 59,157173.84. Zeifman, A., Leorato, S., Orsingher, E., Satin, Ya., Shilova, G. Some universallimits for nonhomogeneous birth and death processes. Queueing systems. 2006. 52, 139151.85. Zeifman, A., A. Korotysheva, Ya. Satin, G. Shilova, T. Panlova, 2013.
Ona queueing model with group services, Lecture Notes in Communications inComputer and Information Science. 2013. 356, 198-205.86. Zeifman, A., Satin, Ya., Panlova, T. Limiting characteristics for nite birthdeath-catastrophe processes // Mathematical biosciences. 2013. 245. P.96102.9687. A. I. Zeifman, A. Korotysheva, Ya. Satin, V. Korolev, V. Bening. Perturbationbounds and truncations for a class of Markovian queues, Queueing Systems. 2014. vol.
76, p. 205-221.88. Zeifman A., Korolev V. On perturbation bounds for continuous-time Markovchains// Statistics & Probability Letters. V. 88. 2014. P. 66-72.89. Zeifman A., Satin, Ya., Shilova, G., Korolev, V., Bening, V., Shorgin, S.On truncations for SZK model // Proceedings 28th European Conference onModeling and Simulation, ECMS 2014, Brescia, Italy. 2014. 577-582.90. Zeifman, A. I., Korolev, V. Y. Two-sided bounds on the rate of convergence forcontinuous-time nite inhomogeneous Markov chains // Statistics & ProbabilityLetters 103.
2015. P. 30-36.91. Zeifman, A., Korotysheva, A., Shilova, G., Korolev, V., Bening, V. Onperturbation bounds for a queueing model with group services // 2015. AIPConference Proceedings. 1648. P. 250012-1-250012-3.92. Zeifman, A., Satin, Ya., Korolev, V., Shorgin, S. On truncations for weaklyergodic inhomogeneous birth and death processes// International Journal ofApplied Mathematics and Computer Science.
24. 2014. P. 503-518.93. Zeifman, A., Korotysheva, A., Satin, Ya., Korolev, V., Shorgin, S., Razumchik,R. Ergodicity and perturbation bounds for inhomogeneous birth and deathprocesses with additional transitions from and to origin// International Journalof Applied Mathematics and Computer Science. 25. 2015. P. 787-802.94. Zeifman A., Satin Ya., Morozov E., Nekrasova R., Gorhsenin A. On theergodicity bounds for a constant retrial rate queueing model // Proceedingsof the 8th International Congress on Ultra Modern Telecommunications andControl Systems and Workshops, IEEE Piscataway, NJ, USA, 323326. 2016,see https://arxiv.org/pdf/1506.01468.pdf.95.
Zeifman A., Satin Ya., Korotysheva, A., Shilova, G., Kiseleva, K., Korolev,V., Bening, V., Shorgin, S. Ergodicity bounds for birth-death processes withparticularities. 2016. AIP Conference Proceedings. 1738.9796. Zeifman, A., Korolev, V., Korotysheva, A., Satin, Ya., Kiseleva, K., Shorgin, S.Bounds for Markovian queues with possible catastrophes. 2017. Proceedings31st European Conference on Modeling and Simulation, ECMS, Budapest,Hungary, p.628-634.97.
Zhang, L., Li, J. The M/M/c queue with mass exodus and mass arrivals whenempty // J. Appl. Probab. 2015. 52, N4. P. 990-1002..