Главная » Просмотр файлов » Пестряков Б.В. Шумоподобные сигналы в системах передачи информации (1973)

Пестряков Б.В. Шумоподобные сигналы в системах передачи информации (1973) (1151884), страница 13

Файл №1151884 Пестряков Б.В. Шумоподобные сигналы в системах передачи информации (1973) (Пестряков Б.В. Шумоподобные сигналы в системах передачи информации (1973)) 13 страницаПестряков Б.В. Шумоподобные сигналы в системах передачи информации (1973) (1151884) страница 132019-07-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 13)

(2.4.47) Отношение приращения отклика под действием сигнала к среднеквад- ратичному отклику от помех при отсутствии сигнала равно Лт (о„,.)!О (о„) = к'2Е,!Лг„— 0,6, т. е. хуже, чем на выходе одного коррелятора (см. (2.4.26)). Из (2.4.42), (2.4.45) — (2.4.47) следует, что так же, как и в схемах для сигнала с известной фазой, работа схемы и соотношение между ее откликом на сигнал и на помеху определяются только энергией сигнала и плотностью мощности помехи. При увеличении энергии сигнала Е, за счет амплитуды а, или длительности Т, соотношение между составляющими спгнала и помехи на выходе схемы улучшается. Отклики схемы на сигнал о, (!), помеху о„(!) и их смесь о„(г) даны на Следовательно, о„подчиняется обобщенному закону Релея. При отсутствии сигнала а, =- О, о, =- о„и получаем (2.4.42).

При сильном сигнале Е,)а, Ъ о„,; тогда, аппроксимируя обобщенный закон Релея нормальным, получим рис. 2.4.10. Изображения функции распределения ш (и„) и ш (о„) даны на рис. 2.4.11, б. Там же для сравнения даны ш (г„) и ш (га). Интегри- рование функций ш (о„) и ш (па) от порога П, даст вероятности ошибок, приведенные в 2 2.3. 2.4.10.

Процессы в схеме распознавания сигналов со случайной фазой В схемах оптимального распознавания сигналов со случайной фазой используются два квадратурных коррелятора для сигналов з, (1) и з, (1) соответственно и вычитающее устройство. При этом может иметь место рабочий режим передачи информации, когда один из сигналов обязательно передается, и нерабочий режим, когда сигналов нет. Прохождение сигналов.

При действии на схему первого сигнала на выходе соответствующего ему канала в момент 1 = Т„как следует из (2.4.38), получим аа 2 2 На выходе другого канала, как следует из (2.4.40), получим о,, = — '' / й,ыэ(0)!. На выходе вычитающего устройства Л0$ — [1 ! Я~ыг (0) [ [ а, (2.4.48) При ортогональных сигналах К,ыг(0) = О. Тогда Ьи,=Е,(а,. (2.4.49) Следовательно, схема, как и в предшествующих случаях, накапливает энергию ожидаемого сигнала. Поскольку в квадратурных корреляторах отклик всегда одного знака, то наличие второго канала и вычитаю- щего устройства в схемах для систем с активной паузой может только ухудшать полезный эффект от сигнала, и использование противоположных сигналов невозможно.

Это особенно существенно, если применяются ШПС и ортогональность обеспечивается за счет разных законов их формирования. Обычно прн этом Я„,, (0) ж 1/Р'В,. При больших базах можно не считаться с ухудшающим влиянием проникновения сигнала через второй квадратурный коррелятор. Кроме того, поскольку ортогональность требуется только для одного значения сдвига т, = 0 и в момент 1 — Т„можно так подобрать сигналы, чтобы для этих условий их ФВК была близка к нулю.

В процессе действия сигнала в интервале времени от 0 до Т, отклик двухканальной схемы с квадратурными корреляторами будет определяться взаимодействием отклика первого канала, настроенного на действующий сигнал, в котором происходит накопление энергии, и вычитающегося из 63 него отклика второго канала, который в каждый данный момент времени 1 определяется огибающей ФВК частей (сегментов) сигнала, которая может быть много хуже, чем ФВК для сигналов в целом. Ввиду важности этих процессов для выявления роли синхронизации в системах с ШПС эти вопросы рассмотрены подробно в гл.

5. При действии на двухканальный квадратурный коррелятор других (мешающих) сигналов отклик каждого из каналов определяется модулем огибающей ФВК сигнала, соответствующего каналу, и мешающего сигнала, а отклик схемы в целом — разностью модулей огибающих ФВК. В связи с тем что этот вопрос имеет значение для анализа действия помех, он подробно рассмотрен в гл. 1О. Прохождение смеси сигнала и флюктуационной помехи. Прохождение одной помехи рассмотрим позднее, так как такой режим не может иметь места при передаче информации в нормально работающей системе.

Смесь сигнала з, (1) и помехи и (1) при ее подаче на двухканальную схему будет по-разному проходить по первому и второму каналам. На выходе первого квадратурного коррелятора, в котором копия сигнала соответствует ожидаемому сигналу, получим отклик о„., определяемый действием и помех, и сигнала. Величина о,„распределена по обобщенному закону Редея (2.4.45). На выходе второго квадратурного коррелятора при условии, что он настроен на сигнал з, (1), ортогональный з, (1), отклик о„, будет определяться только действием помех и иметь релеевское распределение. При неидеальной ортогональности сигналов нахождение отклика существенно усложняется.

Выход вычитающего устройства будет определяться взаимодействием откликов двух каналов. Следовательно, он будет содержать составляющие, обусловленные накоплением в корреляторе энергии сигнала, неидеальной ортогональностью сигналов и накоплением помех.

При подаче сигнала з, (1) результат будет аналогичным. но знак разности Ло, изменится на обратный. Для иллюстрации сказанного на рис. 2.4.12 даны отклики на выходе вычитающего устройства при действии одного сигнала и идеальной ортогональности сигналов (рис. 2.4.12, а), при действии того же сигнала и неидеальной ортогональности сигналов (рис. 2.4.12, б) (для примера взяты сигналы, использованные на рис. 2.4.4 и 2.4.8), а также отклики при действии смеси помехи с сигналом з, (1) или с сигналом з, (1) (идеально ортогональных) (рис. 2.4.12, г и д).

Пунктиром на рис. 2.4.12, б, г и д показан отклик при идеальной ортогональности сигналов и отсутствии помех. Поскольку функции распределения для о,„и о,„отличаются от нормальных, получение выражений, описывающих законы распределения Ьп„связано с трудностями. Эти трудности усугубляются еще и тем, что в отличие от простых сигналов отклик на помеху в двух каналах, настроенных на квазиортогональные ШПС, оказывается зависимым, как это пояснено в ~ 2.3. В связи с трудностями учета влияния зависимости откликов на помеху и квазиортогональности ШПС во многих случаях ими пренебрегают, что позволяет пользоваться простыми выражениями для вероятности опшбок (2.3.33) и (2.3.3?), кч Работа схемы оптимального распознавания сигналов со случайными фазами полностью определяется энергией сигнала и плотностью мощности помех.

При увеличении энергии сигнала отклик иа смесь при действии сигнала з, (1) в большей степени отличается от отклика на смесь прн действии сигнала зз((). Для понимания процессов, происходящих в схеме оптимального распознавания в нерабочем режиме, при отсутствии каких-либо сигналов, что практически может иметь место, если, например, передатчик прекратил работу, необходимо дать вероятностное описание Ло„, При действии только помех в каждом из каналов выходная величина в74 Та( а) г) ~ 6 ! й) 1 4т) ~1. Рис. 2,4Л2, 3 Зак. Ыаз о„, или о„, распределена по релеевскому закону с одинаковыми дисперсией и средним; тогда Ло„имеет нулевое среднее значение и флюктуации, описываемые сложным законом. Следовательно, при действии на схему только помех знак разности Ло„будет случайным и с вероятностью 0,5 будет иметь положительное или отрицательное значение.

Это приведет к тому, что решающее устройство на выходе будет фиксировать случайную последовательность фактов прихода одного или другого сигнала, хотя действуют только помехи. Пример реализации Ли„(1) дан на рис. 2.4.12, в. Поэтому при приеме информации всистемах с активной паузой необходимо иметь индикацию действия сигналов. 2.4.11. Процессы при воздействии на схему последовательности сигналов Сказанное выше относится к описанию работы оптимальных схем при воздействии на них одиночных сигналов. В реальных условиях в системах передачи информации на оптимальную схему воздействует не единичный сигнал, а последовательность сигналов.

Это могут быть последовательности: одинаковых сигналов, случайно чередующихся одинаковых сигналов и пауз, периодически чередующихся двух разных сигналов, случайно чередующихся разных сигналов и т. п. В схемах с корреляторами режим работы и прием последовательности сигналов определяются тем, какая копия сигнала подается на перемножитель. Если на перемножитель подать копию в виде одиночного сигнала, то будет осуществлен одноразовый цикл приема и на выходе интегратора на сколь угодно длительное время сохранится накопившееся напряжение от действия помех или смеси помех с сигналом.

Очевидно, что прием любого второго сигнала схемой, находящейся в таком состоянии, уже невозможен. Для того чтобы схема могла принимать последовательность сигналов, нужно чтобы после каждого цикла, т. е. после окончания каждого сигнала последовательности и принятия решения (гипотезы) с минимальной задержкой по времени (ЬТ,ар), производился сброс накопленного напряжения. После этого коррелятор может осуществлять прием следующего сигнала, соответствующего подаваемой копии. Очевидн з, что прн указанных условиях схемы с корреляторами при приеме последовательностей сигналов в каждом цикле работают так же, как при подаче одиночного сигнала.

Характеристики

Тип файла
DJVU-файл
Размер
6,41 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6392
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее