Диссертация (1150670), страница 17
Текст из файла (страница 17)
P. 765.13178.Krug, J. Solids far from equilibrium / J. Krug, H. Spohn; Ed. by C. Godreche. Cambridge: Cambridge University Press, 1990.79.Halpin-Healy, T. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics / T. Halpin-Healy, Y.
C. Zhang // Phys. Rep. 1995. Vol.254. Pp. 215414.80.Barabasi, A. L. Fractal Concepts in Surface Growth / A. L. Barabasi,H. E. Stanley. Cambridge: Cambridge University Press, 1995.81.Krug, J. Origins of scale invariance in growth processes / J. Krug // Adv.Phys. 1997. Vol. 46. Pp. 139282.82.Lassig, M. On growth, disorder, and eld theory / M. Lassig // Journ.Phys.: Condens. Matter. 1998. Vol.
10. P. 9905.83.Eden. A two-dimensional growth process / Eden // Berkeley Symp. onMath. Statist. and Prob. Proc. Fourth Berkeley Symp. on Math. Statist.and Prob. Cambridge University Press. 1961. Vol. 4. P. 223.84.Edwards, S. F. The Surface Statistics of a Granular Aggregate / S. F. Edwards, D. R. Wilkinson // Proc. R. Soc. London (A). 1982. Vol.381. P. 17.85.Kim, J. M. Surface growth and crossover behaviour in a restricted solidon-solid model / J.
M. Kim, J. M. Kosterlitz, T. Ala-Nissila // J. Phys.(A). 1991. Vol. 24. P. 5569.86.Penrose, M. D. Growth and Roughness of the Interface for Ballistic De-132position / M. D. Penrose // J. Stat. Phys. 2008. Vol. 131. Pp. 247268.87.Dotsenko, V. S.
Critical phenomena and quenched disorder / V. S. Dotsenko // Physics-Uspekhi. 1995. Vol. 38, no. 5. P. 457.88.Threshold critical dynamics of driven interfaces in random media / T. Natterman, S. Stepanow, L. H. Tang, H. Leschhorn // J. Physique II. 1992. Vol.
2. P. 1483.89.Randomly pinned landscape evolution / G. Caldarelli, A. Giacometti,A. Maritan et al. // Phys. Rev. E. 1997. Vol. 55. P. R4865.90.Pelletier, J. D. Fractal behavior in space and time in a simplied modelof uvial landform evolution / J. D. Pelletier // Geomorphology. 2007. Vol. 91. P. 291.91.Forster, D.
Large-distance and long-time properties of a randomly stirreduid / D. Forster, D. R. Nelson, M. J. Stephen // Phys. Rev. 1977. Vol. 16. P. 732.92.Frey, E. 2-loop renormalization-group analysis of the Burgers-KardarParisi-Zhang equation / E. Frey, U. C. Tauber // Phys. Rev. E. 1994. Vol. 50. Pp. 10241045.93.Lassig, M. On the renormalization of the KardarParisiZhang equation / M. Lassig // Nucl. Phys. B. 1995. Vol. 448.
P. 559.94.Generalizations of the Kardar-Parisi-Zhang equation / J. P. Doherty,M. A. Moore, J. M. Kim, A. J. Bray // Phys. Rev. Lett. 1994. Vol. 72, no. 13. Pp. 20412044.13395.Kardar, M. Matrix generalizations of some dynamic eld theories /M. Kardar, A. Zee // Nucl. Phys. B. 1996. Vol. 464, no. 3. Pp. 449462.96.Bork, L. V. The Kardar-Parisi-Zhang equation and its matrix generalization / L. V. Bork, S. L.
Ogarkov // Theor. Math. Phys. 2014. Vol.178, no. 3. Pp. 359373.97.Lam, C. H. Surface growth with temporally correlated noise / C. H. Lam,L. M. Sander, D. E. Wolf // Phys. Rev. A. 1992. Vol. 46, no. 10. P. R6128R6131.98.Pavlik, S. I. Scaling for a growing phase boundary with nonlinear diusion / S.
I. Pavlik // JETP. 1994. Vol. 79. Pp. 303306.99.Bak, P. Self-organized criticality: An explanation of the 1/f noise / P. Bak,C. Tang, K. Wiesenfeld // Phys. Rev. Lett. 1987. Vol. 59, no. 4. Pp. 381-384.100. Tang, C. Critical exponents and scaling relations for self-organized criticalphenomena / C. Tang, P. Bak // Phys. Rev. Lett. 1988.
Vol. 60,no. 23. Pp. 2347-2350.101. Bak, P. Punctuated equilibrium and criticality in a simple model of evolution / P. Bak, K. Sneppen // Phys. Rev. Lett. 1993. Vol. 71, no. 24. Pp. 4083-4086.102. Bak, P. How Nature Works: The Science of Self-Organised Criticality /P. Bak. NY: Copernicus Press, 1996.134103. Jensen, H. J. Emergent Complex Behavior in Physical and BiologicalSystems / H. J. Jensen. Cambridge Univercity Press, 1998.104.
Antonov, N. V. Scaling in erosion of landscapes: renormalization groupanalysis of a model with turbulent mixing / N. V. Antonov, P. I. Kakin //J. Phys. A. 2017. Vol. 50. P. 085002.105. Antonov, N. V. Eects of random environment on a self-organized critical system: Renormalization group analysis of a continuous model /N. V. Antonov, P.
I. Kakin // EPJ Web of Conferences. 2016. Vol. 108. P. 02009.106. Newman, W. I. Cascade Model for Fluvial Geomorphology / W. I. Newman, D. L. Turcotte // Geophysical Journal International. 1990. Vol. 100, no. 3. Pp. 433439.107. Czirok, A. Experimental evidence for self-ane roughening in a micromodel of geomorphological evolution / A. Czirok, E. Somfai, T.
Vicsek //Phys. Rev. Lett. 1993. Vol. 71. P. 21542157..