Диссертация (1150258), страница 29
Текст из файла (страница 29)
22, P. 9612-9620.[18]Farmahini A.H., Bhatia S.K. Differences in the adsorption and diffusion behavior ofwater and non-polar gases in nanoporous carbon: role of cooperative effects of poreconfinement and hydrogen bonding. // Molec.Simul. 2015. Vol. 41, No. 5-6. P. 432445.[19]Lithoxoos G.P., Peristeras L.D., Boulougouris G.C., Economou I.G. Monte Carlosimulation of carbon monoxide, carbon dioxide and methane adsorption onactivated carbon. // Molec.Phys. 2012. Vol. 110, No. 11-12. P. 1153-1160.[20]Tenney C.M., Lastoskie C.M. Molecular simulation of carbon dioxide adsorption inchemically and structurally heterogeneous porous carbons. // Environ.Prog.
2006.Vol. 25, No.4. P. 343-354.157[21]Coasne B., Galarneau A., Di Renzo F., Pellenq R.J.M. Gas adsorption inmesoporous micelle-templated silicas: MCM-41, MCM-48, and SBA-15. //Langmuir. 2006. Vol. 22, No. 26. P. 11097-11105.[22]Ustinov E.A. Modeling of N2 adsorption in MCM-41 materials: hexagonal poresversus cylindrical pores. // Langmuir. 2009.
Vol. 25, No. 13. P. 7450-7456.[23]Coasne B., Galarneau A., Pellenq R.J.-M., Di Renzo F. Adsorption, intrusion andfreezing in porous silica: the view from the nanoscale. // Chem.Soc.Rev. 2013. Vol.42, No. 9. P. 4141-4171.[24]Arora G., Wagner N.J., Sandler S.I. Adsorption and diffusion of molecular nitrogenin single wall carbon nanotubes. // Langmuir. 2004. Vol. 20, No. 15, P. 6268-6277.[25]Jing Y., Wei L., Wang Y., Yu Y.
Molecular simulation of MCM-41: structuralproperties and adsorption of CO2, N2 and flue gas. // Chem.Eng.J. 2013. Vol. 220.P. 264-275.[26]Chang S.-C., Chien S.-Y., Chen C.-L., Chen C.-K. Analyzing adsorptioncharacteristics of CO2, N2 and H2O in MCM-41 silica by molecular simulation. //App.Surf.Sci. 2015. Vol. 331. P. 225–233.[27]Palmer J.C., Moore J.D., Roussel T.J., Brennan J.K., Gubbins K.E. Adsorptivebehavior of CO2, CH4 and their mixtures in carbon nanospace: a molecularsimulation study. // Phys.Chem.Chem.Phys. 2011. Vol.
13, No. 9. P. 3985-3996.[28]Razavi S.S., Hashemianzadeh S.M., Karimi H. Modeling the adsorptive selectivityof carbon nanotubes for effective separation of CO2/N2 mixtures. // J.Molec.Model.2011. Vol. 17, No. 5. P. 1163-1172.[29]Cracknell R.F., Nicholson D., Tennison S.R., Bromhead J. Adsorption andselectivity of carbon dioxide with methane and nitrogen in slit-shaped carbonaceousmicropores: simulation and experiment. // Adsorption. 1996. Vol.
2, No. 3. P. 193203.[30]Billemont P., Coasne B., De Weireld G. Adsorption of carbon dioxide-methanemixtures in porous carbons: effect of surface chemistry. // Adsorption. 2014. Vol.20, No. 2-3. P. 453-463.[31]Ванин А.А., Рул К., Пиотровская Е.М., Бродская Е.Н. Адсорбция метана, азотаи их смесей в порах слоистого углеродного адсорбента по данным158компьютерного моделирования. // Журн.физ.химии. 2006. Т. 80, № 8.
С. 14651472.[32]Maddox M.W., Sowers S.L., Gubbins K.E. Molecular simulation of binary mixtureadsorption in buckytubes and MCM-41. // Adsorption. 1996. Vol. 2, No. 1. P. 2332.[33]Dasgupta T., Punnathanam S.N., Ayappa K.G. Effect of functional groups onseparating carbon dioxide from CO2/N2 gas mixtures using edge functionalizedgrapheme nanoribbons. // Chem.Eng.Sci. 2015. Vol. 121. P. 279-291.[34]Liu L., Nicholson D., Bhatia S.K. Adsorption of CH4 and CH4/CO2 mixtures incarbon nanotubes and disordered carbons: a molecular simulation study.
//Chem.Eng.Sci. 2015. Vol. 121. P. 268-278.[35]Jia Y., Wang M., Wu L., Gao C. Separation of CO2/N2 gas mixture through carbonmembranes: Monte Carlo simulation. // Separ.Sci.Tech. 2007. Vol. 42, No. 16. P.3681-3695.[36]Huang L., Zhang L., Shao Q., Lu L., Lu X., Jiang S., Shen W.
Simulations of binarymixture adsorption of carbon dioxide and methane in carbon nanotubes:temperature, pressure, and pore size effects. // J.Phys.Chem.C. 2007. Vol. 111, No.32, P. 11912-11920.[37]Nicholson D., Gubbins K.E. Separation of carbon dioxide-methane mixtures byadsorption: effects of geometry and energetics on selectivity. // J.Chem.Phys. 1996.Vol. 104, No. 20. P. 8126-8134.[38]Koh C.A., Montanari T., Nooney R.I., Tahir S.F., Westacott R.E. Experimental andcomputer simulation studies of the removal of carbon dioxide from mixtures withmethane using AlPO4-5 and MCM-41.
// Langmuir. 1999. Vol. 15, No. 18. P. 60436049.[39]Brennan J.K., Bandosz T.J., Thomson K.T., Gubbins K.E. Water in porous carbons.// Colloids Surf.A. 2001. Vol. 187-188. P. 539-568.[40]Liu J.-C., Monson P.A. Does water condense in carbon pores? // Langmuir. 2005.Vol. 21, No. 22. P. 10219-10225.[41]Birkett G.R., Do D.D. Simulation study of water adsorption on carbon black: theeffect of graphite water interaction strength. // J.Phys.Chem.C. 2007.
Vol. 111, No.15, P. 5735-5742.159[42]Striolo A., Naicker P.K., Chialvo A.A., Cummings P.T., Gubbins K.E. Simulatedwater adsorption isotherms in hydrophilic and hydrophobic cylindrical nanopores. //Adsorption. 2005. Vol. 11, No. 1 Supplement. P. 397-401.[43]Maddox M., Ulberg D., Gubbins K.E. Molecular simulation of simple fluids andwater in porous carbons. // Fluid Phase Equil.
1995. Vol. 104. P. 145-158.[44]Striolo A., Gubbins K.E., Chialvo A.A., Cummings P.T. Simulated wateradsorption isotherms in carbon nanopores. // Molec.Phys. 2004. Vol. 102, No. 3. P.243-251.[45]Müller E.A., Rull L.F., Vega L.F., Gubbins K.E. Adsorption of water on activatedcarbons: a molecular simulation study. // J.Phys.Chem. 1996. Vol.
100, No. 4, P.1189-1196.[46]Brennan J.K., Thomson K.T., Gubbins K.E. Adsorption of water in activatedcarbons: effects of pore blocking and connectivity. // Langmuir. 2002. Vol. 18, No.14. P. 5438-5447.[47]Jorge M., Schumacher C., Seaton N.A. Simulation study of the effect of thechemical heterogeneity of activated carbon on water adsorption. // Langmuir. 2002.Vol. 18, No.
24. P. 9296-9306.[48]Striolo A., Chialvo A.A., Cummings P.T., Gubbins K.E. Simulated wateradsorption in chemically heterogeneous carbon nanotubes. // J.Chem.Phys. 2006.Vol. 124, No. 7. Art. no. 074710.[49]Wongkoblap A., Do D.D. Adsorption of water in finite length carbon slit pore:comparison between computer simulation and experiment. // J.Phys.Chem.B. 2007.Vol. 111, No. 50. P. 13949-13956.[50]McCallum C.L., Bandosz T.J., McGrother S.C., Müller E.A., Gubbins K.E. Amolecular model for adsorption of water on activated carbon: comparison ofsimulation and experiment. // Langmuir.
1999. Vol. 15, No. 2. P. 533-544.[51]Striolo A., Chialvo A.A., Cummings P.T., Gubbins K.E. Water adsorption incarbon-slit nanopores. // Langmuir. 2003. Vol. 19, No. 20. P. 8583-8591.[52]Striolo A., Chialvo A.A., Gubbins K.E., Cummings P.T. Water in carbonnanotubes: adsorption isotherms and thermodynamic properties from molecularsimulation.
// J.Chem.Phys. 2005. Vol. 122, No. 23. Art. no. 234712.160[53]Striolo A., Gubbins K.E., Gruszkiewicz M.S., Cole D.R., Simonson J.M., ChialvoA.A., Cummings P.T., Burchell T.D., More K.L. Effect of temperature on theadsorption of water in porous carbons. // Langmuir.
2005. Vol. 21, No. 21. P. 94579467.[54]Г.Г.Маленков. Структура водных систем. Модели и численный эксперимент.Дисс.докт.хим.наук, Москва, 1990.[55]Picaud S., Collignon B., Hoang P.N.M., Rayez J.-C. Adsorption of water moleculason partially oxidized graphite surfaces: a molecular dynamics study of thecompetition between OH and COOH sites. // Phys.Chem.Chem.Phys.
2008. Vol.10, No. 46. P. 6998-7009.[56]Nguyen T.X., Bhatia S.K. How water adsorbs in hydrophobic nanospaces. //J.Phys.Chem.C. 2011. Vol. 115, No. 33. P. 16606-16612.[57]Sadeghi M., Parsafar G.A. Density-induced molecular arrangements of water insidecarbon nanotubes. // Phys.Chem.Chem.Phys. 2013. Vol. 15, No. 19. P. 7379-7388.[58]Bonnaud P.A., Coasne B., Pellenq R.J.-M. Molecular simulation of water confinedin nanoporous silica. // J.Phys.:Condens.Matter. 2010.
Vol. 22, No. 28. Art. no.284110.[59]Puibasset J., Pellenq R.J.-M. Water adsorption on hydrophilic mesoporous andplane silica substrates: a grand canonical Monte Carlo study. // J.Chem.Phys. 2003.Vol. 118, No. 12. P. 5613-5622.[60]Puibasset J., Pellenq R.J.-M. Grand canonical Monte Carlo simulation study ofwater structure on hydrophobic mesoporous and plane silica substrates. //J.Chem.Phys. 2003. Vol. 119, No. 17.
P. 9226-9232.[61]Puibasset J., Pellenq R.J.-M. A grand canonical Monte Carlo simulation study ofwater adsorption on Vycor-like hydrophilic mesoporous silica at differenttemperatures. // J.Phys.:Condens.Matter. 2004. Vol. 16, No. 45. P. S5329-S5343.[62]Puibasset J., Pellenq R.J.-M.
Water adsorption in disordered mesoporous silica(Vycor) at 300 K and 650 K: a grand canonical Monte Carlo simulation study ofhysteresis. // J.Chem.Phys. 2005. Vol. 122, No. 9. Art. no. 094704.[63]Furukawa S., Nishiumi T., Aoyama N., Nitta T., Nakano M. A molecularsimulation study of adsorption of acetone/water in mesoporous silicas modified bypore surface silylation. // J.Chem.Eng.Japan.
2005. Vol. 38, No. 12. P. 999-1007.161[64]Zhao X.S., Lu G.Q., Hu X. Characterization of the structural and surface propertiesof chemically modified MCM-41 material. // Micropor.Mesopor.Mater. 2000. Vol.41, No. 1-3. P. 37-47.[65]Wark M., Koch M., Brückner A., Grünert W. Investigation of zeolites byphotoelectron and ion scattering spectroscopy. Part IV. XPS studies of vanadiummodified zeolites.
// J.Chem.Soc.Faraday Trans. 1995. Vol. 91, No. 13. P. 20412043.[66]Branton P.J., Hall P.G., Sing K.S.W. Physisorption of alcohols and water vapour byMCM-41, a model mesoporous adsorbent. // Adsorption. 1995. Vol. 1, No. 1. P. 7782.[67]Trzpit M., Soulard M., Patarin J., Desbiens N., Cailliez F., Boutin A., Demachy I.,Fuchs A.H. The effect of local defects on water adsorption in silicalite-1 zeolite: ajoint experimental and molecular simulation study. // Langmuir. 2007. Vol. 23, No.20. P.