Диссертация (1150258), страница 31
Текст из файла (страница 31)
5. P. 773-776.[126] Zhou L., Sun Y., Zhou Y. Enhancement of the methane storage on activated carbonby preadsorbed water. // AIChE J. 2002. Vol. 48, P. 2412-2416.[127] Perrin A., Celzard A., Marêché J.F., Furdin G. Improved methane storage capacitiesby sorption on wet active carbons. // Carbon. 2004. Vol. 42, No. 7. P. 1249-1256.[128] Zhou Y., Dia M., Zhou L., Sun Y., Su W. Storage of methane on wet activatedcarbon: influence of pore size distribution. // Carbon. 2004.
Vol. 42, No. 8-9. P.1855-1858.[129] Celzard A., Marêché J.F. Optimal wetting of active carbons for methane hydrateformation. // Fuel. 2006. Vol. 85, No. 7-8. P. 957-966.[130] Sun Y., Xue Q., Zhou Y., Zhou L. Sorption equilibria of CO2/CH4 mixture onactivated carbon in presence of water.
// J.Colloid Interface Sci. 2008. Vol. 322, No.1. P. 22-26.[131] Zhang X.-X., Liu H., Sun C.Y., Xiao P., Liu B., Yang L.-Y., Zhan C.H., Wang X.Q., Li N., Chen G.-J. Effect of water content on separation of CO2/CH4 with activecarbon by adsorption-hydration hybrid method. // Separ.Purif.Tech. 2014. Vol. 130.P. 132-140.[132] Su F., Lu C., Cnen W., Bai H., Hwang J.F.
Capture of CO2 from flue gas viamultiwalled carbon nanotubes. // Sci.Total Environ. 2009. Vol. 407, No. 8. P. 3017–3023.167[133] Zhou L., Liu X., Li J., Sun Y., Zhou Y. Sorption/desorption equilibrium of methanein silica gel with pre-adsorption of water. // Colloids Surf.A. 2006. Vol. 273, No. 13. P. 117-120.[134] Lee K.-M., Lim Y.-H., Jo Y.-M. Evaluation of moisture effect on low-level CO2adsorption by ion-exchanged zeolite. // Environ.Tech. 2012. Vol. 33, No 1.
P.77-84.[135] Tao W.-H., Yang T.C.-K., Chang Y.-N., Chang L.-K., Chung T.-W. Effect ofmoisture on the adsorption of volatile organic compounds by zeolite 13X. //J.Environ.Eng. 2004. Vol. 130, No. 10. P. 1210-1216.[136] Brandani F., Ruthven D.M. The effect of water on the adsorption of CO2 and C3H8on type X zeolites. // Ind.Eng.Chem.Res. 2004. Vol. 43, No. 26. P. 8339-8344.[137] Xu X., Song C., Miller B.G., Scaroni A.W.
Influence of moisture on CO2separation from gas mixture by a nanoporous adsorbent based on polyethyleniminemodified molecular sieve MCM-41. // Ind.Eng.Chem.Res. 2005. Vol. 44, No. 21. P.8113-8119.[138] Ohlin L., Bazin P., Thibault-Starzyk F., Hedlund J., Grahn M. Adsorption of CO2,CH4, and H2O in zeolite ZSM-5 studied using in situ ATR-FTIR spectroscopy. //J.Phys.Chem.C. 2013. Vol. 117, No.
33. P. 16972-16982.[139] Müller E.A., Hung F.R., Gubbins K.E. Adsorption of water vapor-methane mixtureson activated carbons. // Langmuir. 2000. Vol. 16, No. 12. P. 5418-5424.[140] Müller E.A., Gubbins K.E. Molecular simulation study of hydrophilic andhydrophobic behavior of activated carbon surfaces. // Carbon. 1998. Vol. 36, No.10. P. 1433-1438.[141] Сизов В.В., Пиотровская Е.М., Бродская Е.Н.
Адсорбция бинарных системгаз-водавуглеродныхмикропорах.Компьютерноемоделирование.Журн.физ.химии. 2007. Т. 81, № 8. С. 1458-1465.[142] Joos L., Swisher J.A., Smit B. Molecular simulation study of the competitiveadsorption of H2O and CO2 in zeolite 13X. // Langmuir. 2013. Vol. 29, No. 51. P.15936-15942.[143] Zhang J., Clennell M.B., Dewhurst D.N., Liu K.
Combined Monte Carlo andmolecular dynamics simulation of methane adsorption on dry and moist coal. //Fuel. 2014. Vol. 122. P. 186-197.168[144] Liu L., Bhatia S.K. Molecular simulation of CO2 adsorption in the presence of waterin single-walled carbon nanotubes. // J.Phys.Chem.C. 2013. Vol. 117, No. 26. P.13479-13491.[145] Liu L., Nicholson D., Bhatia S.K.
Impact of H2O on CO2 separation from naturalgas: comparison of carbon nanotubes and disordered carbon. // J.Phys.Chem.C.2015. Vol. 119, No. 1. P. 407-419.[146] Hutson N.D., Zajic S.C., Yang R.T. Influence of residual water on the adsorption ofatmospheric gases in Li-X zeolite: experiment and simulation. // Ind.Eng.Chem.Res.2000. Vol. 39, No. 6. P.
1775-1780.[147] Allen M.P., Tildesley D.J. Computer simulation of liquids. Clarendon Press, 1987.[148] Frenkel D., Smit B. Understanding molecular simulation: From algorithms toapplications. Academic Press, 2001.[149] Leach A. Molecular modeling: Principles and Applications. Pearson Education,2001.[150] Metropolis N., Rosenbluth A.W., Rosenbluth M.N., Teller A.H., Teller E. Equationof state calculations by fast computing machines.
// J.Chem.Phys. 1953. Vol. 21,No. 6. P. 1087-1092.[151] Alder B.J., Wainwright T.E. Studies in molecular dynamics. I. General method. //J.Chem.Phys. 1959. Vol. 31, No. 2. P. 459-466.[152] Boys S.F., Cook G.B., Reeves C.M., Shavitt I. Automatic fundamental calculationsof molecular structure. Nature.
1956. Vol. 178, No. 4544. P. 1207-1209.[153] Норман Г.Э., Филинов В.С. Исследование фазовых переходов с помощьюметода Монте-Карло. Теплофизика высоких температур. 1969. Т. 7, № 2. С.233-240.[154] Замалин В.М., Норман Г.Э., Филинов В.С. Метод Монте-Карловстатистической термодинамике. М.:-Наука, 1977.[155] Adams D.J.
Chemical potential of hard-sphere fluids by Monte Carlo methods. //Molec.Phys. 1974. Vol. 28, No. 5. P. 1241-1252.[156] Adams D.J. Grand canonical ensemble Monte Carlo for a Lennard-Jones fluid. //Molec.Phys. 1975. Vol. 29, No. 1. P. 307-311.[157] Сизов В.В., Бродская Е.Н. Компьютерное моделирование адсорбции смесиметан-углекислый газ во влажных микропористых углях. Программа и резюме169докладов III Международной конференции по коллоидной химии и физикохимической механике IC CCPCM’08.
Москва, 2008, с. 33.[158] Шаповалова А.А., Сизов В.В., Бродская Е.Н. Моделирование адсорбции смесиCO2–CH4 углеродными микропористыми адсорбентами в присутствии воды.Тезисы докладов XIV Всероссийского симпозиума с участием иностранныхученых«Актуальныепроблемытеорииадсорбции,пористостииадсорбционной селективности». Москва–Клязьма, 2010, с. 20.[159] Волков А.И., Жарский И.М. Большой химический справочник.
Мн.:Современная школа, 2005.[160] Verlet L. Computer ‘experiments’ on classical fluids. I. Thermodynamicalproperties of Lennard-Jones molecules. // Phys.Rev. 1967. Vol. 159, No. 1. P. 98103.[161] Verlet L. Computer ‘experiments’ on classical fluids. II. Equilibrium correlationfunctions. // Phys.Rev.
1968. Vol. 165, No. 1. P. 201-214.[162] Levesque D., Verlet L. Computer ‘experiments’ on classical fluids. III. Timedependent self-correlation functions. // Phys.Rev.A 1970. Vol. 2, No. 6. P. 25142528.[163] Levesque D., Verlet L., Kürkijarvi J. Computer ‘experiments’ on classical fluids.IV. Transport properties and time-correlation functions of the Lennard-Jones liquidnear its triple point. // Phys.Rev.A. 1973.
Vol. 7, No. 5. P. 1690-1700.[164] Nosé S. A unified formulation of the constant temperature molecular dynamicsmethods. // J.Chem.Phys. 1984. Vol. 81, No. 1. P. 511-519.[165] Hoover W.G. Canonical dynamics: equilibrium phase-space distributions. //Phys.Rev.A. 1985. Vol. 31, No. 3. P. 1695-1697.[166] Jones J.E. On the determination of molecular fields.
– I. From the variation of theviscosity of a gas with temperature. // Proc.Royal Soc.London Ser.A. 1924. Vol.106, No. 738. P. 441-462.[167] Jones J.E. On the determination of molecular fields. – II. From the equation of stateof a gas. // Proc.Royal Soc.London Ser.A. 1924. Vol. 106, No. 738. P. 463-477.[168] Lorentz H.A. Über die Anwendung des Satzes vom Virial in der kinetischenTheorie der Gase. // Annalen der Physik. 1881. Vol.
12, No. 1. P. 127-136.170[169] Berthelot D. Sur le mélange des gaz. // Comptes rendus hebdomadaires des séancesde l’Académie des Sciences. 1898. Vol. 126. P. 1703-1855.[170] Good R.J., Hope C.J. New combining rule for intermolecular distances inintermolecular potential functions.
// J.Chem.Phys. 1970. Vol. 53, No. 2. P. 540543.[171] Jorgensen W.L., Tirado-Rives J. The OPLS potential functions for proteins. Energyminimizations for crystals of cyclic peptides and crambin. // J.Amer.Chem.Soc.1988. Vol. 110, No. 6. P. 1657-1666.[172] Martin M.G., Siepmann J.I. Transferable potentials for phase equilibria. 1.