Диссертация (1150258), страница 30
Текст из файла (страница 30)
10131-10139.[68]Yazaydin A.Ö., Thompson R.W. Molecular simulation of water adsorption insilicalite: effect of silanol groups and different cations. // Micropor.Mesopor.Mater.2009. Vol. 123, No. 1-3. P. 169-176.[69]Cailliez F., Stirnemann G., Boutin A., Demachy I., Fuchs A.H. Does watercondense in hydrophobic cavities? A molecular simulation study of hydration inheterogeneous nanopores.
// J.Phys.Chem.C. 2008. Vol. 112, No. 28. P. 1043510445.[70]Floess J.K., Murad S. Molecular simulations of the competitive adsorption ofsiloxanes and water on amorphous silica surfaces as a function of temperature. //Chem.Phys.Lett. 2011. Vol. 516, No. 4-6. P. 216-219.[71]Шевкунов С.В. Вода в экстремально узких плоских порах с кристаллическимистенками. 1. Структура. // Коллоидный журнал. 2014. Т.
76, № 2. С. 243-262.[72]Yamashita K., Daiguji H. Molecular simulations of water adsorbed on mesoporoussilica thin films. // J.Phys.Chem.C. 2013. Vol. 117, No. 5. P. 2084-2095.[73]Shirono K., Daiguji H. Molecular simulation of the phase behavior of waterconfined in silica nanopores. // J.Phys.Chem.C. 2007. Vol. 111, No. 22, P. 79387946.162[74]Bourg I.C., Steefel C.I. Molecular dynamics simulations of water structure anddiffusion in silica nanopores.
// J.Phys.Chem.C. 2012. Vol. 116, No. 21. P. 1155611564.[75]Gallo P., Rovere M., Ricci M.A., Hartnig C., Spohr E. Non-exponential kineticbehaviour of confined water. // Europhys.Lett. 2000. Vol. 49, No. 2. P. 183-188.[76]Argyris D., Tummala N.R., Striolo A. Molecular structure and dynamics in thinwater films at the silica and graphite surfaces. // J.Phys.Chem.C. 2008.
Vol. 112,No. 35. P. 13587-13599.[77]Rovere M., Ricci M.A., Vellati D., Bruni F. A molecular dynamics simulation ofwater confined in a cylindrical SiO2 pore. // J.Chem.Phys. 1998. Vol. 108, No. 23.P. 9859-9867.[78]Milischuk A.A., Ladanyi B.M. Structure and dynamics of water confined in silicananopores. // J.Chem.Phys. 2011. Vol. 135, No. 17.
Art. no. 174709.[79]Medved’ I., Černý R. Surface diffusion in porous media: a critical review. //Micropor.Mesopor.Mater. 2011. Vol. 142, No. 2-3. P. 405-422.[80]Cracknell R.F., Nicholson D., Gubbins K.E. Molecular dynamics study of the selfdiffusion of supercritical methane in slit-shaped graphitic micropores. //J.Chem.Soc.Faraday Trans. 1995. Vol. 91, No. 9. P. 1377-1383.[81]Bhatia S.K., Nicholson D.
Adsorption and diffusion of methane in silica nanopores:a comparison of single-site and five-site models. // J.Phys.Chem.C. 2012. Vol. 116,No. 3, P. 2344-23505.[82]Bhatia S.K., Nicholson D. Modeling self-diffusion of simple fluids in nanopores. //J.Phys.Chem.B. 2011. Vol.
115, No. 40. P. 11700-11711.[83]Mao Z., Sinnott S.B. A computational study of molecular diffusion and dynamicflow through carbon nanotubes. // J.Phys.Chem.B. 2000. Vol. 104, No. 19. P. 46184624.[84]Chen H., Sholl D.S. Rapid diffusion of CH4/H2 mixtures in single-walled carbonnanotubes. // J.Amer.Chem.Soc. 2004. Vol. 126, No. 25. P. 7778-7779.[85]Chen H., Johnson J.K., Sholl D.S. Transport diffusion of gases is rapid in flexiblecarbon nanotubes.
// J.Phys.Chem.B. 2006. Vol. 110, No. 5. P. 1971-1975.[86]Bartus K., Brodka A. Temperature study of structure and dynamics of methane incarbon nanotubes. // J.Phys.Chem.C. 2014. Vol. 118, No. 22. P. 12010-12016.163[87]Jakobtorweihen S., Verbeek M.G., Lowe C.P., Keil F.J., Smit B. Understanding theloading dependence of self-diffusion in carbon nanotubes.
// Phys.Rev.Lett. 2005.Vol. 95, No. 4. Art. no. 044501.[88]Ramirez S., Ferreira D., Gottberg V., Labady M., Albornoz A., Laine J. Adding amicropore framework to a parent activated carbon by carbon deposition frommethane or ethylene. // Carbon. 2003. Vol. 41, No. 13. P. 2653-2689.[89]Papadopoulos G.K., Nicholson D., Suh S.-H. Molecular dynamics studies ofdiffusion in model cylindrical pores at very low densities. // Molec.Simul. 1999.Vol. 22, No. 4-5. P. 237-256.[90]Farmahini A.H., Shahtalebi A., Jobic H., Bhatia S.K.
Influence of structuralheterogeneity on diffusion of CH4 and CO2 in silicon carbide-derived nanoporouscarbon. // J.Phys.Chem.C. 2014. Vol. 118, No. 22. P. 11784-11798.[91]Cao D., Wu J. Self-diffusion of methane in single-walled carbon nanotubes at suband supercritical conditions. // Langmuir. 2004. Vol. 20, No. 9. P. 3759-3765.[92]Firouzi M., Wilcox J.
Molecular modeling of carbon dioxide transport and storagein porous carbon-based materials. // Micropor.Mesopor.Mater. 2012. Vol. 158. P.195-203.[93]Liu Y.-C., Wang Q., Lu L.-H. Water confined in nanopores: its moleculardistribution and diffusion at lower density. // Chem.Phys.Lett. 2003.
Vol. 381, No.1-2. P. 210-215.[94]Семашко О.В., Бродская Е.Н. Компьютерное моделирование адсорбции водыв графитовых микрокапиллярах. // Коллоидный журнал. 2004. Т. 66, № 1. С.80-87.[95]Hu H., Li X., Fang Z., Wei N., Li Q. Small-molecule gas sorption and diffusion incoal: molecular simulation. // Energy. 2010. Vol. 35, No. 7. P. 2939-2944.[96]Düren T., Jakobtorweihen S., Keil F.J., Seaton N.A.
Grand canonical moleculardynamics simulations of transport diffusion in geometrically heterogeneous pores. //Phys.Chem.Chem.Phys. 2003. Vol. 5, No. 2. P. 369-375.[97]Williams J.J., Seaton N.A., Düren T. Influence of surface groups on the diffusion ofgases in MCM-41: a molecular dynamics study. // J.Phys.Chem.C. 2011.
Vol. 115,No. 21. P. 10651-10660.164[98]Nguyen T.X., Bhatia S.K. Some anomalies in the self-diffusion of water indisordered carbons. // J.Phys.Chem.C. 2012. Vol. 116, No. 5. P. 3667-3676.[99]Striolo A. The mechanism of water diffusion in narrow carbon nanotubes. // NanoLett. 2006. Vol. 6, No. 4. P. 633-639.[100] Spohr E., Hartnig C., Gallo P., Rovere M. Water in porous glasses. A computersimulation study. // J.Molec.Liq.
1999. Vol. 80, No. 2-3. P. 165-178.[101] Romero-Vargas Castrillon S., Giovambattista N., Aksay I.A., Debenedetti P.G.Evolution from surface-influenced to bulk-like dynamics in nanoscopicallyconfined water. // J.Phys.Chem.B. 2009. Vol. 113, No. 23. P. 7973-7976.[102] Cui S.T. Molecular self-diffusion in nanoscale cylindrical pores and classical Fick’slaw predictions. // J.Chem.Phys. 2005. Vol. 123, No. 5. Art.
no. 054706.[103] Brovchenko I.V., Geiger A., Paschek D. Simulation of confined water inequilibrium with a bulk reservoir. // Fluid Phase Equil. 2001. Vol. 183-184. P. 331339.[104] Gallo P., Rovere M., Spohr E. Glass transition and layering effects in confinedwater: a computer simulation study. // J.Chem.Phys. 2000. Vol. 113, No.
24. P.11324-11335.[105] Bródka A. Diffusion in restricted volume. // Molec.Phys. 1994. Vol. 82, No. 5. P.1075-1078.[106] Gallo P., Rovere M. Anomalous dynamics of confined water at low hydration. //J.Phys.:Condens.Matter. 2003. Vol. 15, No. 45. P. 7625-7633.[107] Gallo P., Rovere M., Chen S.-H. Anomalous dynamics of water confined in MCM41 at different hydrations.
// J.Phys.:Condens.Matter. 2010. Vol. 22, No. 28. Art. no.284102.[108] Joubert J.I., Grein C.T., Bienstock D. Sorption of methane in moist coal. // Fuel.1973. Vol. 52. P. 181-185.[109] Joubert J.I., Grein C.T., Bienstock D. Effect of moisture on the methane capacity ofAmerican coals. // Fuel. 1974. Vol.
53. P. 186-191.[110] Krooss B.M., van Bergen F., Gensterblum Y., Siemons N., Pagnier H.J.M., DavidP. High-pressure methane and carbon dioxide adsorption on dry and moistureequilibrated Pennsylvanian coals. // Int.J.Coal Geol. 2002. Vol.
51, No. 2. P. 69-92.165[111] Crosdale P.J., Moore T.A., Mares T.E. Influence of moisture content andtemperature on methane adsorption isotherm analysis for coals from a low-rank,biogenically-sourced gas reservoir. // Int.J.Coal Geol. 2008. Vol. 76, No. 1-2. P.166-174.[112] Day S., Sakurovs R., Weir S. Supercritical gas sorption on moist coals.
// Int.J.CoalGeol. 2008. Vol. 74, No. 3-4. P. 203-214.[113] Battistutta E., Eftekhari A.A., Bruining H., Wolf K.-H. Manometric sorptionmeasurements of CO2 on moisture-equilibrated bituminous coal. // Energy Fuels.2012. Vol. 26, No. 1. P. 746-752.[114] Gensterblum Y., Busch A., Krooss B.M. Molecular concept and experimentalevidence of competitive adsorption of H2O, CO2 and CH4 on organic material. //Fuel.
2014. Vol. 115. P 581-588.[115] Mohammad S.A., Chen J.S., Fitzgerald J.E., Robinson, Jr. R.L., Gasem K.A.M.Adsorption of pure carbon dioxide on wet Argonne coals at 328.2 K and pressuresup to 13.8 MPa. // Energy Fuels. 2009. Vol. 23, No. 2. P. 1107-1117.[116] Lee H.-H., Kim H.-J., Shi Y., Keffer D., Lee C.-H. Competitive adsorption ofCO2/CH4 mixture on dry and wet coal from subcritical to supercritical conditions. //Chem.Eng.J.
2013. Vol. 230. P. 93-101.[117] Clarkson C.R., Bustin R.M. Binary gas adsorption/desorption isotherms: effect ofmoisture and coal composition upon carbon dioxide selectivity over methane. //Int.J.Coal Geol. 2000. P. 241-271.[118] Day S., Fry R., Sakurovs R.
Swelling of Australian coals in supercritical CO2. //Int.J.Coal Geol. 2008. Vol. 74, No. 1. P. 41-52.[119] Van Bergen F., Spiers C., Floor G., Bots P. Strain development in unconfined coalsexposed to CO2, CH4 and Ar: effect of moisture. // Int.J.Coal Geol. 2009. Vol. 77,No. 1-2. P. 43-53.[120] Day S., Fry R., Sakurovs R., Weir S. Swelling of coals by supercritical gases and itsrelationship to sorption. // Energy Fuels. 2010. Vol. 24, No. 4. P. 2777-2783.[121] Pan Z., Connell L.D., Camilleri M., Connelly L. Effects of matrix moisture on gasdiffusion and flow in coal.
// Fuel. 2010. Vol. 89, No. 11. P. 3207-3217.166[122] Ozdemir E., Schroeder K. Effect of moisture on adsorption isotherms andadsorption capacities of CO2 on coals. // Energy Fuels. 2009. Vol. 23, No. 5. P.2821-2831.[123] Billemont P., Coasne B., De Weireld G. Adsorption of carbon dioxide, methane,and their mixtures in porous carbons: effect of surface chemistry, water content, andpore disorder. // Langmuir. 2013.
Vol. 29, No. 10. P. 3328-3338.[124] Billemont P., Coasne B., De Weireld G. An experimental and molecular simulationstudy of the adsorption of carbon dioxide and methane in nanoporous carbons in thepresence of water. // Langmuir. 2011. Vol. 27, No. 3. P. 1015-1024.[125] Zhou L., Li M., Sun Y., Zhou Y. Effect of moisture in microporous activatedcarbon on the adsorption of methane. // Carbon. 2001. Vol. 39, No.