Диссертация (1149979), страница 16
Текст из файла (страница 16)
The normal contact of rough surfaces with discretization [Text]/ F. Bucher, K. Knothe, A. Lunenschlob // Archive of Appl. Mech. – 2004. – Vol.73, №8. – P. 561 – 567.93. Chebakov, M.J. Finite element analysis of contact problems withcomplicated properties [Text] /M.J. Chebakov, V.J. Kolesnikov, A.V.Nasedkin130[and others]// CD-Rom Proceedings of the Tenth International Conference onComputational Structures Technology. CST-2010. Valencia, Spain, 14-17September 2010.
– Valencia, Spain: Civil-CompPress, Stirlingshire UK, 2010. –Paper 9. –17 p. (Scopus; doi: 10.4203/ccp.93.9)94. Chen Shaohua. Non-slipping adhesive contact of an elastic cylinder onstretched substrates [Text] / Shaohua Chen, Huajian Gao // Proc. R. Soc. A,January 8, 2006. – 462. – P. 211–228.95. Coon1, E.T. Asymptotic Analysis of Finite Deformation in a NonlinearTransversely Isotropic Incompressible Hyperelastic Half-space Subjected to aTensile Point Load [Text] / E.T. Coon1, D.P.
Warne, P.G. Warne // Journal ofElasticity. –June 2004. –Vol. 75, Number 3. – P. 197–228.96. Cruse, T.A. An improved boundary-integral equation method for threedimensional elastic stress analysis [Text] / T.A. Cruse // Computers and Structures.– 1974.
– Vol. 4, № 4. – P. 741– 754.97. Datta, S.K. An axisymmetric problem of an elastic half-space containing arigid spherical inclusion [Text] /S.K.Datta //Quarterly Jnl. of Mechanics and Appl.Math. –1969. –22(4). –P. 439 – 451.98. Dhaliwal, R.E. An axisymmetric mixed boundary value problem for athick slab [Text] / R.E. Dhaliwal // Siam J. Appl. Math. – 1967. – Vol. 15, № 1. –P. 98–106.99. Elliot, H.A.Axial symmetric stress distributions in aeolotropicHexagonal crystals. The problem of plane and related problems [Text] / H.A.Elliot// Proceedings of Cambridge Philosophical Society. –1949. –Vol. 45. – P.621–630.100. Erdogan, F. Mixed boundary value problems in mechanics [Text] / F.Erdogan //Mechanics Today.
– Vol. 4, Ed. S. Nemat. – Nasser. – Oxford:Pergamon Press. – 1978. – P. 1– 86.101. Fabrikant, V.I. Non-traditional contact problem for transversely isotropichalf-space [Text] / V.I. Fabrikant// Quarterly Journal of Mechanics and AppliedMathematics. –2011. –V.64, №2. – P. 151–170.131102.
Fabrikant, V.I. Non-traditional crack problem for transversely-isotropicbody[Text] / V.I. Fabrikant// European Journal of Mechanics A/ Solids. –2011. –Vol. 30. – P. 902 – 912.103. Fu, G. Normal Indentation of Elastic Half-Space With a Rigid FrictionlessAxisymmetric Punch [Text] / G. Fu //J. Appl. Mech. – March 2002.
– Vol. 69,Issue 2. – P. 142 – 147.104. Gang Liu. Analytical solution for ground motion of a half space with asemi-cylindrical canyon and a beeline crack [Text] / Gang Liu, Baohua Ji, DiankuiLiu // Proc. R. Soc., A8, July 2008. –Vol. 464, no. 2095. –P.
1905 –1921.105. Gecit, M.R. Axisymmetric contact problem for a semiinfinite cylinder anda half space [Text] /M.R. Gecit // International Journal of Engineering Science. –1986. –Vol. 24, issue 8. – P. 1245 – 1256.106. Georgiadis, H. G. Problems of the Flamant–Boussinesq and Kelvin Typein Dipolar Gradient Elasticity [Text] / H. G.
Georgiadis, D.S. Anagnostou //Journal of Elasticity. –January 2008. –Vol. 90, Number 1. – P. 71–98.107. Gladwell, G.M.L. On the approximate solution of elastic contact problemscircular annulus [Text] / G.M.L. Gladwell, O.P. Gupta // Journal of Elasticity. –October 1979. –Vol. 9, Number 4. – P. 335–348.108.
Goryacheva, I.G. Modeling of fatique wear of a two layered elastic halfspace in contact with periodic system of indenters [Text] / I.G.Goryacheva,E.V.Torskaya. Wear. – 2010. –Vol. 268, Issue 11–12. – P. 1417–1422.109. Green, A.E. The distribution of stress in the neighborhood of flat ellipticalcrack in an elastic solid [Text] / A.E. Green, Y.N.
Sneddon // Proc. CambridgePhil. Soc. – 1960. – 46. – P. 159 – 163.110. Gridin, D. The complete far-field asymptotic description of a point sourceacting on a transversely isotropic half-space [Text] / D. Gridin, L. J. Fradkin //Proc. R. Soc. Lond., A. – November 8, 2001. – 457. – P. 2675–2698.111. Han Itanping. The boundary integral eqution method for a bounded elasticbody containing a crack and an inclusion [Text] / Han Itanping // Lanzhou daxue132xuebao. Ziran Kexue ban.
– J. Lanzhou Univ. Natur. Sci. – 1993. – Vol. 29, № 4. –P. 63–68.112. Hanson, M.T. A simplified analysis for an elastic quarter-space [Text] /M.T. Hanson, L.M. Keer //Quart.1. Mech. and Appl. Math. – 1990. –Vol.43, №4. –P. 561–587.113. Hasegawa H. Green's Function for Axisymmetric Body Force Problems ofan Elastic Half Space and Their Application (An Elastic Half Space with aHemispherical Pit) [Text] /H. Hasegawa //Bulletin of JSME.
– September 1984. –Vol. 27, No.231-4. – P. 1829 – 1835.114. Heise, U. The calculation of Cauchy principal values in integral equationsfor boundary value problems of the plane and three dimensional theory of elasticity[Text] / U. Heise // J. Elast. – 1975.
– Vol. 5, № 2. – P. 99–110.115. Kermandis, T. A numerical solution for axially symmetrical elasticityproblems [Text] / T. Kermandis // Int. J. of Solids and Struct. – 1975. – Vol.11, №4. – P. 493–500.116. Khan, S.M. Axisymmetric problem for a half-space in the micropolartheory of elasticity [Text] / S.M. Khan, R.S. Dhaliwal // Journal of Elasticity. –January 1977. –Vol. 7, number 1.
–P. 13–32.117. Khapilova, N.S. The exact solution of the problem on a concertrated forceaction on the isotropic half-space with the boundary fixed elastically [Text]/N.S.Khapilova, S.V. Zaletov// Journal of St. Petesburg state polytechnicaluniversity. Physics and Mathematics. –2015.
– 1–3 (128). – P. 287–292.118. Kral, E.R. Three-dimensional finite element analysis of subsurface stressand strain fields due to sliding contact on an elastic - plastic layered medium [Text]/ E.R. Kral, K. Komvopoulos //ASME J. Tribol. – 1997. – № 119. – P. 332–341.119. Lachat, J.C. Effective numerical treatment of boundary-integral equations:a formulation for three-dimensional elastostatics [Text] / J.C.
Lachat, J.O.Watson// Int. J. for numerical Methods in Engineering. – 1976. – V. 10, issue 5. – P. 991–1005.133120. Lowengrub, M. An axisymmetric boundary value problem of mixed typefor a half-space [Text] /M.Lowengrub, I.N. Sneddon // Duke University, NorthCarolina. University Glasgow. –1962. – P.
39 – 46.121. Li Junshan. A Boussinesq–Cerruti Solution Set for Constant and LinearDistribution of Normal and Tangential Load over a Triangular Area [Text] /Junshan Li, E.J. Berger // Journal of Elasticity. – May 2001. –Vol. 63, Number 2. –P. 137–151.122. Ma Chien-Ching.
Image Singularities of Green's Functions for anIsotropic Elastic Half-Plane Subjected to Forces and Dislocations [Text] / MaChien-Ching, Lin Ru-Li // Mathematics and Mechanics of Solids. – 2001. – Vol. 6,No. 5. – P. 503–524.123. Mao, K. Effect of sliding friction on contact stresses for multilayeredelastic bodies with rough surfaces [Text] / K. Mao, T. Bell, Y.Sun // ASME J.Tribol. – 1997. – No.119. – P. 476–480.124.
Mistakidis, E.S. Unilater al contact problems with fractal geometry andfractal friction laws: methods of calculations [Text] / E.S. Mistakidis, O.K.Panagoli, P.D. Panagiotopoulos // Comput. Mech. – 1998. – Vol. 21, No.11. – P.353–362.125. Morrey, C.B. On the analyticity of the solutions of linear elliptic systemsof partial differential equations [Text] / C.B. Morrey, L. Nirenberg // Comm. PureAppl. Math. – 1957. – № 10. – P. 271–290.126. Nasedkin, A.V.
New models of coupled active materials for finite elementpackage ACELAN [Text] /A.V.Nasedkin,A.Skaliukh, A.Soloviev// AIPConference Proceedings. – 2014. – V. 1637. – P. 714 – 723. (Web of Science, doi:10.1063/1.4904643)127.
Oliveira, M.F.F. Boundary element formulation of axisymmetric problemsfor an elastic half-space [Text] /M.F.F. Oliveira, N.A. Dumont, A.P.S. Selvadurai// Engineering Analysis with Boundary Elements. –October 2012. –Vol.36, issue10. – P.1478 – 1492.134128. On Green's function for a three-dimensional exponentially graded elasticsolid [Text] / P.A. Martin, J.D. Richardson, L.J. Gray, J.R. Berger // Proc. R.
Soc.Lond., A. – August 8, 2002. – 458. – P. 1931–1947.129. Paget, D.F. The numerical evaluations of Hadammard finite-part integrals[Text] / D.F. Paget // Numer. Math. – 1981. – Vol. 36, № 4. – P. 447–453.130. Pan, E. Three-Dimensional Green's Functions in an Anisotropic HalfSpace With General Boundary Conditions [Text] / E. Pan // J. Appl.