Диссертация (1149979), страница 19
Текст из файла (страница 19)
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := .2;> r := .7;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := .2;> r := .8;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P; > B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;150(продолжение А3)> x := .2;> r := .9;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P; B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := .1;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := .2;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := .3;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := .4;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := .5;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := .6;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;151(продолжение А3)> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := .7;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := .8;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := .9;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := .1;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := .2;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := .3;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;152(продолжение А3)> x := 1.8;> r := .4;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := .5;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := .6;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := .7;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := .8;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := .9;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := .2;> r := 0;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;153(продолжение А3)> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := .2;> r := 1;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := 0;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1.8;> r := 1;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := 0;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 .. infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart;> x := 1;> r := 1;> int(BesselJ(0, r*t)*BesselJ(1, t)/(t+x), t = 0 ..
infinity);> P := evalf(%);> B(0) := 1;> B(1) := 1-x*B(0)*P;> B(2) := 1-x*B(1)*P;> B(3) := 1-x*B(2)*P;> B(4) := 1-x*B(3)*P;> B(5) := 1-x*B(4)*P;> B(6) := 1-x*B(5)*P;> B(7) := 1-x*B(6)*P;> restart; plot({[[0., .6110374507], [.1, .6117393612], [.2, .6138606728], [.3, .6174944825],.6227999047], [.5, .6300567332], [.6, .6397507039], [.7, .6527773158], [.8, .6709927329],.6992079006], [1., .7658327908]], [[0., .6829987457], [.1, .6835683280], [.2, .6853014820],.6882841701], [.4, .6926736957], [.5, .6987347986], [.6, .7069071689], [.7, .7179540821],.7333406724], [.9, .7565263966], [1., .8056100709]], [[0., .867204], [.1, .867518], [.2, .868467],.870083], [.4, .872425], [.5, .875582], [.6, .879702], [.7, .885023], [.8, .891976], [.9, .901510],.918239]]}, x = 0 ..
1, y = .6 .. 1, color = [red, green, blue], title = "ðåøåíèå àíàëèòè÷åñêîãî óðàâíåíèÿ");> restart;[.4,[.9,[.3,[.8,[.3,[1.,154(продолжение А3)Расчет нормального напряжения на границе полупространства> x0 := 0;> x1 := .2;> x2 := .4;> x3 := .6;> x4 := .7;> x5 := .8;> x6 := .9;> x7 := 1;> y0 := .867204;> y1 := .868467;> y2 := .872425;> y3 := .879702;> y4 := .885023;> y5 := .891976;> y6 := .901510;> y7 := .918239;> a1 := (y1-y0)/(x1-x0);> a2 := (y2-y1)/(x2-x1);> a3 := (y3-y2)/(x3-x2);> a4 := (y4-y3)/(x4-x3);> a5 := (y5-y4)/(x5-x4);> a6 := (y6-y5)/(x6-x5);> a7 := (y7-y6)/(x7-x6);> b1 := y1-a1*x1;> b2 := y2-a2*x2;> b3 := y3-a3*x3;> b4 := y4-a4*x4;> b5 := y5-a5*x5;> b6 := y6-a6*x6;> b7 := y7-a7*x7;> er1 := int(-(a1*x+b1)*x*BesselJ(0, x*t), x = 0 ..