Диссертация (1149207), страница 13
Текст из файла (страница 13)
785.11.Vanelderen P., Vancauwenbergh J., Sels B., Schoonheydt R. Coordinationchemistry and reactivity of copper in zeolites // Coord. Chem. – Rev. 2013. – Vol.257. – P. 483.12.Parvulescu V.I., Grange P., Delmon B. Catalytical removal of NO // Catal.Today.– 1998. – Vol. 46. – P. 233.13.Yahiro H., Iwamoto M. Copper ion-exchanged zeolite catalysts in deNOx reaction// Appl. Catal., A. – 2001.
– Vol. 222. – P. 163.14.Yin S., Liu B., Sato T. Microwave assisted hydrothermal synthesis of nitrogendoped titania nanoparticles // Funct. Mater. Lett. – 2008. – Vol. 1. – P. 173.15.Atlas of zeolite framework types. — Amsterdam, Netherlands: Elsevier, 2007 – P.225.16.Loewenstein W. The distribution of aluminium in the tetrahedra of silicates andaluminates // Am. Miner. – 1954. – Vol.
39. – P. 92.17.Zeolites: Science and Technology. — Boston, USA: Nijhoff Publishers, 1984 – P.240.18.Zeolites for Cleaner Technologies. — London, UK: Imperial College Press, 2002– P. 100.19.Simoncic P., Armbruster T. Peculiarity and defect structure of the natural andsynthetic zeolite mordenite: A single-crystal X-ray study // Am. Mineral. – 2004.– Vol.
89. – P. 421.20.Synthesis in High Silica Aluminosilicate Zeolites. — Amsterdam, Netherlands:Elsevier, 1987 – P. 321.21.Meier W. The crystal structure of mordenite (ptilolite) // Z. Krist. – 1961. – Vol.115. – P. 439.10222.Simoncic P., Armbruster T. incorporated into zeolite mordenite-Na: a singlecrystal X-ray study // Am. Mineral. – 2004. – Vol. 89.
– P. 421.23.Alberti A., Davoli P., Vezzalini G. The crystal structure refinement of a naturalmordenite // Z. Krist. – 1986. – Vol. 175. – P. 249.24.Raatz F., Marcilly C., Freund E. Comparison between small port and large portmordenites // Zeolites. – 1985. – Vol. 5. – P.
329.25.Moreno S., Poncelet. G. Dealumination of small- and large-port mordenites: acomparative study. Microporous Mater // Microporous Mater.– 1997. – Vol. 12. –P. 197.26.Sand L. Synthesis of large-port and small-port mordenites // Mol. Sieves, Pap.Conf. – 1968. – P. 71.27.Freund E., Marcilly C., Raatz F.
Pore opening of a small-port mordenite by air calcination // J. Chem. Soc., Chem. Commun. – 1982. – Vol. 5. – P. 309.28.Stach H., Jtinchen J., Jerschkewitz H., Lobe U., Parlitz B., Hunger M. Mordeniteacidity: dependence on the silicon/aluminum ratio and the framework aluminumtopology. 2. Acidity investigations // J. Phys. Chem. – 1992. – Vol.
96. – P. 8480.29.Lippmaa E., Maegi M., Samoson, A., Tarmak M., Engelhardt G. Investigation ofthe structure of zeolites by solid-state high-resolution silicon-29 NMRspectroscopy // J. Am. Chem. Soc. – 1981. – Vol. 103. – P. 4992.30.Engelhardt G., Lippmaa E., Mägi. M. Ordering of silicon and aluminium ions inthe framework of NaX zeolites. A solid-state high-resolution 29Si n.m.r. study. //J.
Chem. Soc., Chem. Commun. – 1981. – Vol. 1. – P. 712.31.Klinowski J., Ramdas S., Thomas J., Fyfe C., Hartman J. A re-examination of Si,Al ordering in zeolites NaX and NaY // J. Chem. Soc. Faraday Trans. 2. – 1982. –Vol. 78. – P. 1025.32.Melchior M., Vaughan D., Jacobson A. Characterization of the Silicon Aluminum103Distribution in Synthetic Faujasites by High-Resolution Solid-State Si-29 Nmr //J. Am. Chem. Soc.
– 1982. – Vol. 104. – P. 4859.33.Takaishi T., Kato M., Itabashi K. Determination of the ordered distribution ofaluminum atoms in a zeolitic framework. Part II // Zeolites. – 1995. – Vol. 15. – P.21.34.Takaishi T., Kato M., Itabashi K. Stability of the Al-O-Si-O-Al Linkage in aZeolitic Framework // J. Phys. Chem. – 1994. – Vol. 98. – P. 5742.35.Hays G.R., Erp W.A., Alma N.C., Couperus P.A., Huis R., Wilson A.E.
Solidstate silicon n.m.r. studies of the zeolite mordenite and its dealumination //Zeolites. – 1984. – Vol. 4. – P. 377.36.Fyfe C. a, Gobbi G.C., Kennedy G.J. Investigation of the conversion(dealumination) of ZSM-5 into silicalite by high-resolution solid-state silicon-29and aluminum-27 MAS NMR spectroscopy // J. Phys. Chem. – 1984. – Vol. 88. –P. 3248.37.Chen N.Y., Smith F.A. Preparation of dealuminized mordenite // Inorg. Chem. –1976.
– Vol. 15. – P. 295.38.Sklenak S. Dedecek, J., Li C., Wichterlová B., Gábová V., Sierka M., Sauer, J.Aluminium siting in the ZSM-5 framework by combination of high resolution27Al NMR and DFT/MM calculations. // Phys. Chem. Chem. Phys.
– 2009. –Vol. 11. – P. 1237.39.Debras G. Gourgue A., Nagy J. B., Clippeleir G. Physico-chemicalcharacterization of pentasil type materials. I. Precursors and calcined zeolites //Zeolites. – 1985. – Vol. 5. – P. 369.40.Lin J.-C., Chao K.-J. Distribution of silicon-to-aluminium ratios in zeolite ZSM-5// J.
Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. – 1986. – Vol.82. – P. 2645.41.Althoff R., Schulz-Dobrick B., Schh F., Unger K. Controlling the spatial104distribution of aluminum in ZSM-5 crystals // Microporous Mater. – 1993. – Vol.1. – P. 207.42.Gábová V., Dĕdecek J., Cejka J. Control of Al distribution in ZSM-5 byconditions of zeolite synthesis. // Chem.
Commun. (Camb). – 2003. Vol. 10. – P.1196.43.Chao K. jung, Chern J. young. Aluminium distribution in large ZSM-5 crystals //Zeolites. – 1988. – Vol. 8. – P. 82.44.Nagy J.B., Bodart P., Collette H., El Hage-Al Asswad J., Gabelica Z., Aiello R.,Nastro A., Pellegrino C. Aluminium distribution and cation location in various MZSM-5-type zeolites (Li, Na, K, Rb, Cs, NH4) // Zeolites. – 1988.
– Vol. 8. – P.209.45.Derouane E.G., Gilson J.P., Gabelica Z., Mousty-Desbuquoit C., Verbist J.Concerning the aluminum distribution gradient in ZSM-5 zeolites // J. Catal. –1981. – Vol. 71. – P. 447.46.Hughes A.E., Wilshier K.G., Sexton B.A., Smart P. Aluminum distribution inZSM-5 as determined by X-Ray photoelectron spectroscopy // J. Catal. – 1983. –Vol. 80. – P. 221.47.Karwacki L., Kox M.H., de Winter D. et al. Morphology-dependent zeoliteintergrowth structures leading to distinct internal and outer-surface moleculardiffusion barriers.
// Nat. Mater. – 2009. – Vol. 8. – P. 959.48.Kessler H., Patarin J., Schott-Darie C. The opportunities of the fluoride route inthe synthesis of microporous materials // Stud. Surf. Sci. Catal. – 1994. – Vol. 85.– P. 75.49.Von Ballmoos R., Meier W.M. Zoned aluminium distribution in synthetic zeoliteZSM-5 // Nature. – 1981. – Vol. 289. – P. 782.50.Danilina N., Krumeich F.,Castelanelli S., Van Bokhoven J. Where are the activesites in zeolites Origin of aluminum zoning in ZSM-5 // J. Phys. Chem. C.
– 2010.105– Vol. 114. – P. 6640.51.Zeolites and Ordered Mesoporous Materials: Progress and Prospects. —Amsterdam, Netherlands: Elsevier, 2005 – P. 157.52.Townsend R.P., Coker E.N. Ion exchange in zeolites // Stud. Surf. Sci. Catal. –2001. – Vol. 137. – P. 467.53.Catalysis and zeolites: fundamentals and applications. — Berlin, Germany:Springer-Verlag, 1999 – P. 100.54.Barrer R.M., Davies J.A., Rees.
L.V.C. Thermodynamics and thermochemistry ofcation exchange in zeolite Y // J. Inorg. Nucl. Chem. – 1968. – Vol. 30. – P. 3333.55.Kosanović C., Bronić J., Subotić B., Smit I., Stubičar, M., Tonejc A., YamamotoT. Mechanochemistry of zeolites: Part 1. Amorphization of zeolites A and X andsynthetic mordenite by ball milling // zeolites. – 1993. – Vol. 13. – P. 261.56.Nassima M., Francois H. Microwave-Assisted Polyesterification Process in Bulkand Aqueous Media // Int. J. Inorg.
Chem. – 2014. – Vol. 4. – P. 24.57.Jacob J., Chia L.H.L., Boey F.Y.C. Thermal and non-thermal interaction ofmicrowave radiation with materials // J. Mater. Sci. – 1995. – Vol. 30. – P. 5321.58.Khan N.A., Jhung S.H. Synthesis of metal-organic frameworks (MOFs) withmicrowave or ultrasound: Rapid reaction, phase-selectivity, and size reduction //Coord. Chem. Rev. – 2015.
– Vol. 285. – P. 11.59.Kim J., Mun S., Ko .H. et al. Review of microwave assisted manufacturingtechnologies // Int. J. Precis. Eng. Manuf. – 2012. – Vol. 13. – P. 2263.60.Weckhuysen, B.M., Verberckmoes A.A., Fu L., Schoonheydt R.A. ZeoliteEncapsulated Copper(II) Amino Acid Complexes: Synthesis, Spectroscopy, andCatalysis // J. Phys. Chem. – 1996.
– Vol. 100. – P. 9456.61.Biglino D., Li H., Erickson R. et al. EPR and ENDOR studies of NOx and Cu2+in zeolites: bonding and diffusion // Phys. Chem. Chem. Phys. – 1999. – Vol. 12.106– P. 2887.62.Delabie A., Pierloot K., Groothaert M., Weckhuysen B., Schoonheydt R. Thesiting of Cu(II) in mordenite: a theoretical spectroscopic study // Phys. Chem.Chem. Phys. – 2002. – Vol. 4. – P. 134.63.Pavelka M., Burda J. Theoretical description of copper Cu(I)/Cu(II) complexes inmixed ammine-aqua environment. DFT and ab initio quantum chemical study //Chem.
Phys. – 2005. – Vol. 312. – P. 193.64.Occhiuzzi M., Fierro G., Ferraris G., Moretti G. Unusual complete reduction of Cu2+ species in Cu-ZSM-5 zeolites under vacuum treatment at high temperature //Chem. Mater. – 2012. – Vol. 24. – P. – 2022.65.Beutel T., Sarkany J., Lei G. et al. Redox Chemistry of Cu/ZSM-5 // J. Phys.Chem.