Диссертация (1145832), страница 23
Текст из файла (страница 23)
–2004. – Т.1(II). – С.27-37.17. Пендина А.А., Ефимова О.А., Каминская А.Н., Кузнецова Т.В., Баранов В.С.Иммуноцитохимическийанализстатусаметилированияметафазныххромосомчеловека // Цитология. – 2005. – Т.47, №8. – C.731-737.18. Родионов А.B. Генетическая активность ДНК G- и R-блоков митотических хромосомчеловека // Генетика.
– 1985. – Т.21. – №12. – С.2057-2065.19. Al-Mahdawi S, Sandi C, Mouro Pinto R, Pook MA. Friedreich ataxia patient tissues exhibitincreased 5-hydroxymethylcytosine modification and decreased CTCF binding at the FXNlocus // PLoS One. – 2013. – Vol.8(9). – e74956.20. Al-Mahdawi S, Virmouni SA, Pook MA. The emerging role of 5-hydroxymethylcytosine inneurodegenerative diseases // Front Neurosci. – 2014. – Vol.8. – P.397.21.
Alastalo TP, Lonnstrom M, Leppa S, Kaarniranta K, Pelto-Huikko M, Sistonen L, ParvinenM. Stage-specific expression and cellular localization of the heat shock factor 2 isoforms inthe rat seminiferous epithelium // Exp Cell Res. – 1998. – Vol.240. – P.16-27.22. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. DNA repair. In: Molecularbiology of the cell. 4th ed.
New York: Garland Science; 2002.23. Amann RP. The cycle of the seminiferous epithelium in humans: a need to revisit? // JAndrol. – 2008. – Vol.29(5). – P.469-487.24. Amouroux R, Nashun B, Shirane K, Nakagawa S, Hill PW, D’Souza Z, Nakayama M,Matsuda M, Turp A, Ndjetehe E, Encheva V. De novo DNA methylation drives 5hmCaccumulation in mouse zygotes // Nature cell biology. – 2016. – Vol.18. – P.225-233.25. Aoki VW, Emery BR, Carrell DT. Global sperm deoxyribonucleic acid methylation isunaffected in protamine-deficient infertile males // Fertil Steril. – 2006. – Vol.86(5). –P.1541–1543.10726. Ara T, Nakamura Y, Egawa T, Sugiyama T, Abe K, Kishimoto T, Matsui Y, Nagasawa T.Impaired colonization of the gonads by primordial germ cells in mice lacking a chemokine,stromal cell-derived factor-1 (SDF-1) // PNAS. – 2003.
– Vol.100. – P.5319-5323.27. Arabi M. Nicotinic infertility: assessing DNA and plasma membrane integrity of humanspermatozoa // Andrologia. – 2004. – Vol.36. – P.305-310.28. Arand J, Wossidlo M, Lepikhov K, Peat JR, Reik W, Walter J. Selective impairment ofmethylation maintenance is the major cause of DNA methylation reprogramming in the earlyembryo // Epigenetics Chromatin. – 2015. – Vol.8(1). – P.1-14.29. Baccarelli A, Bollati V. Epigenetics and environmental chemicals // Curr Opin Pediatr. –2009.
– Vol.2. – P.243-251.30. Bachman M, Uribe-Lewis S, Yang X, Williams M, Murrell A, Balasubramanian S. 5Hydroxymethylcytosine is a predominantly stable DNA modification // Nat Chem. – 2014. –Vol.6(12). – P.1049-1055.31. Barbin A, Montpellier C, Kokalj-Vokac N, Gibaud A, Niveleau A, et al. New sites ofmethylcytosine-rich DNA detected on metaphase chromosomes // Hum Genet. – 1994.
–Vol.94. – P.684-692.32. Beaujean N, Hartshorne G, Cavilla J, et al. Non-conservation of mammalian preimplantationmethylation dynamics // Curr Biol. – 2004. – Vol.14. – P.R266-R267.33. Benchaib M, Ajina M, Lornage J, Niveleau A, et al. Quantitation by image analysis ofglobal DNA methylation in human spermatozoa and its prognostic value in in vitrofertilization: a preliminary study // Fertil Steril. – 2003. – Vol.80. – P.947-953.34. Besingi W, Johansson A.
Smoke-related DNA methylation changes in the etiology of humandisease // Human Molecular Genetics. – 2014. – Vol.23. – P.2290-2297.35. Bhutani N, Brady JJ, Damian M, Sacco A, Corbel SY, Blau HM. Reprogramming towardspluripotency requires AID-dependent DNA demethylation // Nature. – 2010. – Vol.463. –P.1042-1047.36. Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics // Cell. – 2011. –Vol.146(6). – P.866-872.37. Bird AP. DNA methylation patterns and epigenetic memory // Genes Dev. – 2002. – Vol.16.– P.6-21.38.
Bird AP, Wolffe AP. Methylation-induced repression – belts, braces, and chromatin // Cell. –1999. – Vol.99. – P.451-454.39. Boitani C, Di Persio S, Esposito V, Vicini E. Spermatogonial cells: mouse, monkey and mancomparison // Semin Cell Dev Biol. – 2016. – Vol.59. – P.79-88.10840. Bortvin A, Goodheart M, Liao M, Page DC. Dppa3 / Pgc7 / stella is a maternal factor and isnot required for germ cell specification in mice // BMC Dev Biol.
– 2004. – Vol.4. – P.1-5.41. Bourc'his D, Le Bourhis D, Patin D, Niveleau A, Comizzoli P, Renard JP, Viegas-PéquignotE. Delayed and incomplete reprogramming of chromosome methylation patterns in bovinecloned embryos // Curr Biol. – 2001. – Vol.11(19). – P.1542-1546.42. Bourc’his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germcells lacking Dnmt3L // Nature. – 2004.
– Vol.431. – P.96-99.43. Bradley-Whitman MA, Lovell MA. Epigenetic changes in the progression of Alzheimer'sdisease // Mech Ageing Dev. – 2013. – Vol.134(10). – P.486-495.44. Branco MR, Ficz G, Reik W. Uncovering the role of 5-hydroxymethylcytosine in theepigenome // Nat Rev Genet. – 2011. – Vol.13.
– P.7-13.45. Bransteitter R, Pham P, Scharff MD, Goodman MF. Activation-induced cytidine deaminasedeaminates deoxycytidine on single-stranded DNA but requires the action of RNase // ProcNatl Acad Sci USA. – 2003. – Vol.100(7). – P.4102-4107.46. Breton CV, Byun HM, Wenten M, et al. Prenatal tobacco smoke exposure affects global andgene-specific DNA methylation // Am J Respir Crit Care Med. – 2009. – Vol.180(5). – P.462467.47. Breton CV, Siegmund KD, Joubert BR, Wang X, Qui W, et al. Prenatal tobacco smokeexposure is associated with childhood DNA CpG methylation // PLoS One.
– 2014. –Vol.9(6):e99716.48. Cardenas A, Koestler DC, Houseman EA, et al. Differential DNA methylation in umbilicalcord blood of infants exposed to mercury and arsenic in utero // Epigenetics. – 2015. –Vol.10.– P.508-515.49. Cardoso WV, Lü J. Regulation of early lung morphogenesis: questions, facts andcontroversies // Development.
– 2006. – Vol.133. – P.1611-1624.50. Cardoso WV, Kotton DN. Specification and patterning of the respiratory system //StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute. – 2008. Available fromhttp://www.ncbi.nlm.nih.gov/books/NBK27021/51. Carlson BM. Human embryology and developmental biology. 4th edition. USA. Mosby,2009. – 541 p.52. Carrell DT, Emery BR, Hammoud S. The aetiology of sperm protamine abnormalities andtheir potential impact on the sperm epigenome // Int J Androl. – 2008. – Vol.31(6). – P.537545.53.
Carrell DT. Epigenetics of the male gamete // Fertil Steril. – 2012. – Vol.97(2). – P.267-274.10954. Chen CC, Wang KY, Shen CK. The mammalian de novo DNA methyltransferasesDNMT3A and DNMT3B are also DNA 5-hydroxymethylcytosine dehydroxymethylases // JBiol Chem. – 2012. – Vol.287. – P.33116-33121.55. Cheng CY, Mruk DD. The blood-testis barrier and its implication in male contraception //Pharmacol Rev. – 2012.
– Vol.64. – P.16-64.56. Chia N, Wang L, Lu X, Senut MC et al. Hypothesis: environmental regulation of 5hydroxymethylcytosine by oxidative stress // Epigenetics. – 2011. – Vol.6(7). – P.853-856.57. Chouliaras L, Mastroeni D, Delvaux E, Grover A, Kenis G, Hof PR, Steinbusch HW,Coleman PD, Rutten BP, van den Hove DL. Consistent decrease in global DNA methylationand hydroxymethylation in the hippocampus of Alzheimer’s disease patients // NeurobiolAging. – 2013.
– Vol.34. – P.2091-2099.58. Clermont Y. The cycle of the seminiferous epithelium in man // Am J Anat. – 1963. –Vol.112. – P.35-51.59. Cliffe LJ, Kieft R, Southern T et al. JBP1 and JBP2 are two distinct thymidine hydroxylasesinvolved in J biosynthesis in genomic DNA of African trypanosomes // Nucleic Acids Res. –2009. – Vol.37. – P.1452-1462.60. Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS. Evolution of theAID/APOBEC family of polynucleotide (deoxy)cytidine deaminases // Mol Biol Evol. –2005.
– Vol.22(2). – P.367-377.61. Conway K, Edmiston SN, Parrish E, Bryant C, Tse CK et al. Breast tumor DNA methylationpatterns associated with smoking in the Carolina Breast Cancer Study // Breast Cancer ResTreat. – 2017. – Vol.163. – P.349-361.62. Cortazar D, Kunz C, Selfridge J et al. Embryonic lethal phenotype reveals a function ofTDG in maintaining epigenetic stability // Nature. – 2011. – Vol.470(7334). – P.419-423.63. Cortellino S, Xu J, Sannai M et al. Thymine DNA glycosylase is essential for active DNAdemethylation by linked deamination-base excision repair // Cell.
– 2011. – Vol.146(1). –P.67-79.64. Cortes D, Muller J, Skakkebaek NE. Proliferation of Sertoli cells during development of thehuman testis assessed by stereological methods // Int J Androl. – 1987. – Vol.10. – P.589-596.65. Coulter JB, O'Driscoll CM, Bressler JP. Hydroquinone increases5-hydroxymethylcytosineformation through ten eleven translocation 1 (TET1) 5-methylcytosine dioxygenase // J BiolChem.
–2013. – Vol.288. – P.28792-28800.66. Dean W. Pathways of DNA Demethylation // Adv Exp Med Biol. – 2016. – Vol.945. –P.247-274.11067. Dolinoy DC, Jirtle RL. Environmental Epigenomics in Human Health and Disease // EnvirMol Mutag. – 2008. – Vol.49. – P.4-8.68. Due-Gorian P, Mignot TM, Bourgeois C. Еmbrio and maternal interaction site: a delicateequilibrium // Eur J Obstet Gynecol Reprod Biol.
– 1999. – Vol.83. – P.65-100.69. Dyban AP, Baranov VS. Cytogenetics of mammalian embryonic development. Oxford:Clarendon Press, 1987. – 362 p.70. Dyban A, de Sutter P, Verlinsky Y. Preimplantation cytogenetic analysis // Preimplantationdiagnosis of genetic Diseases // eds. Verlinsky Y. and Kuliev A. Wiley-Liss, Inc., New York,1993.
– P.93-128.71. Efimova OA, Pendina AA, Tikhonov AV, Fedorova ID, Krapivin MI, et al. Chromosomehydroxymethylation patterns in human zygotes and cleavage-stage embryos // Reproduction.– 2015. – Vol.149. – P.223-233.72. Efimova OA, Pendina AA, Tikhonov AV, Parfenyev SE, Mekina ID, Komarova EM,Mazilina MA, Daev EV, Chiryaeva OG, Galembo IA, Krapivin MI, Glotov OS, Stepanova IS,Shlykova SA, Kogan IY, Gzgzyan AM, Kuznetzova TV, Baranov VS.