Диссертация (1145832), страница 26
Текст из файла (страница 26)
– Vol.9(1). – P.64-71.174.Nakamura T, Liu YJ, Nakashima H et al. PGC7 binds histone H3K9me2 to protect againstconversion of 5mC to 5hmC in early embryos // Nature. – 2012. – Vol.486(7403). – P.415419.175.Nashun B, Hill PW, Hajkova P. Reprogramming of cell fate: epigenetic memory and theerasure of memories past // EMBO J.
– 2015. – Vol.34(10). – P.1296-1308.176.Nashun B, Hill PW, Smallwood SA, Dharmalingam G, Amouroux R, Clark SJ, Sharma V,Ndjetehe E, Pelczar P, Festenstein RJ et al. Continuous histone replacement by Hira isessential for normal transcriptional regulation and de novo DNA methylation during mouseoogenesis // Mol Cell. – 2015. – Vol.60(4).
– P.611-625.118177.Nestor CE, Ottaviano R, Reddington J et al. Tissue type is a major modifier of the 5hydroxymethylcytosine content of human genes // Genome Res. – 2012. – Vol.22(3). – P.467477.178.Nettersheim D, Heukamp LC, Fronhoffs F, Grewe MJ, Haas N, Waha A, Honecker F, WahaA, Kristiansen G, Schorle H. Analysis of TET expression/activity and 5mC oxidation duringnormal and malignant germ cell development // PLoS One. – 2013 – Vol.8. e82881.179.Ni K, Dansranjavin T, Rogenhofer N, Oeztuerk N, Deuker J, Bergmann M, Schuppe HC,Wagenlehner F, Weidner W, Steger K, Schagdarsurengin U.
TET enzymes are successivelyexpressed during human spermatogenesis and their expression level is pivotal for malefertility // Hum Reprod. – 2016. – Vol.31(7). – P.1411-1424.180.Niakan KK, Eggan K. Analysis of human embryos from zygote to blastocyst reveals distinctgene expression patterns relative to the mouse // Developmental Biology. – 2013. –Vol.375(1).
– P.54-64.181.Ohbo K, Yoshida S, Ohmura M, Ohneda O, Ogawa T, Tsuchiya H, Kuwana T, Kehler J,Abe K, Scholer HR, Suda T. Identification and characterization of stem cells in prepubertalspermatogenesis in mice // DeV Biol. – 2003. – Vol.258. – P.209-225.182.Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b areessential for de novo methylation and mammalian development // Cell. – 1999. – Vol.99. –P.247-257.183.Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP,Allis CD.
DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation ofDNA // Nature. – 2007. – Vol.448. – P.714-717.184.Orth JM. Proliferation of Sertoli cells in fetal and postnatal rats: a quantitativeautoradiographic study // Anat Rec. – 1982. – Vol.203. – P.485-492.185.Papale LA, Madrid A, Li S, Alisch RS. Early-life stress links 5-hydroxymethylcytosine toanxiety-related behaviors // Epigenetics. – 2017. – Vol.12(4). – P264-276.186.Park JS, Lee D, Cho S, Shin ST, Kang YK. Active loss of DNA methylation in two-cellstage goat embryos // Int J Dev Biol – 2010.
– Vol.54(8-9). – P.1323-1328.187.Pastor WA, Pape UJ, Huang Y et al. Genome-wide mapping of 5-hydroxymethylcytosine inembryonic stem cells // Nature. – 2011. – Vol.473. – P.394-397.188.Patkin EL. Epigenetic mechanisms for primary differentiation in mammalian embryos // IntRev Cytol. – 2002. – Vol.216. – P.81-129.189.Patkin EL. Asymmetry of sister chromatids methylation of preimplantation mouse embryochromosomes as revealed by nick translation in situ // Cytogenet Cell Genet.
– 1997. –Vol.77. – P.82-83.119190.Patkin EL, Kustova, ME, Dyban AP Spontaneous sister-chromatids differentiation (SCD)and sister-chromatid exchanges (SCEs) in chromosomes of mouse blastocyst // CytogenetCell Genet. – 1994. – Vol.66. – P.31-32.191.Patkin EL, Kustova ME, Perticone P.
The influence of demethylation agents on thepreimplantation mouse development // Zygote. – 1998. – Vol.6. – P.351-358.192.Payer B, Saitou M, Barton SC, Thresher R, Dixon JP, Zahn D, Colledge WH, Carlton MB,Nakano T, Surani MA. Stella is a maternal effect gene required for normal early developmentin mice // Curr Biol. – 2003. – Vol.13. – P.2110-2117.193.Pedone PV, Pikaart MJ, Cerrato F et al. Role of histone acetylation and DNA methylation inthe maintenance of the imprinted expression of the H19 and Igf2 genes // FEBS Lett. – 1999.– Vol.458, №1. – P.45-50.194.Pendina AA, Efimova OA, Fedorova ID et al.
DNA methylation patterns of metaphasechromosomes in human preimplantation embryos // Cytogenetic and Genome Research. –2011. – Vol.132(1-2). – P.1-7.195.Pendina AA, Efimova OA, Tikhonov AV, Chiryaeva OG, Fedorova ID, Koltsova AS,Krapivin MI, Parfenyev SE, Kuznetzova TV, Baranov VS. Immunofluorescent staining forcytosine modifications like 5-methylcytosine and its oxidative derivatives and FISH, in«Fluorescence In Situ Hybridization (FISH): Application Guide» 2nd Edition, edited by T.Liehr, Springer-Verlag Berlin Heidelberg, 2017, pp.
337-346; ISBN 978-3-662-52957-7,ISBN 978-3-662-52959-1 (eBook), DOI: 10.1007/978-3-662-52959-1, Pages: 606.196.Penn NW, Suwalski R, O'Riley C et al. The presence of 5-hydroxymethylcytosine in animaldeoxyribonucleic acid // Biochem J. – 1972. – Vol.126. – P.781-790.197.Pesce M, Schöler HR. Oct-4: gatekeeper in the beginnings of mammalian development //Stem Cells. – 2001. – Vol.19(4). – P.271-278.198.Pfaffeneder T, Hackner B, Truss M et al. The discovery of 5-formylcytosine in embryonicstem cell DNA // Angew Chem Int Ed Engl.
– 201. – Vol.50(31). – P.7008-7012.199.Pfarr W, Webersinke G, Paar C, Wechselberger C. Immunodetection of 5'-methylcytosineon Giemsa-stained chromosomes // Biotechniques. – 2005. – Vol.38. – №4. – Р.527-528, 530.200.Pfeifer GP, Kadam S, Jin SG. 5-hydroxymethylcytosine and its potential roles indevelopment and cancer // Epigenetics Chromatin. – 2013. – Vol.6. – P.10.201.Pfeifer K. Mechanisms of genomic imprinting // Am. J. Hum.
Genet. – 2000. – V.67. –P.777-787.202.Pilsner JR, Liu X, Ahsan H, Ilievski V et al. Genomic methylation of peripheral bloodleukocyte DNA: influences of arsenic and folate in Bangladeshi adults // Am J Clin Nutr. –2007. – Vol.86. – P.1179-1186.120203.Popp C, Dean W, Feng S, Cokus SJ, Andrews S, Pellegrini M, Jacobsen SE, Reik W.Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AIDdeficiency // Nature. – 2010.
– Vol.463. – P.1101-1105.204.Preece MA, Moore GE. Genomic imprinting, uniparental disomy and fetal growth // Tem. –2000. – Vol.11, № 7. – P.270-275.205.Puri D, Dhawan J, Mishra RK. The paternal hidden agenda: epigenetic inheritance throughsperm chromatin // Epigenetics. – 2010. – Vol.5. – P.386-391.206.Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R.
Non-CpGmethylation is prevalent in embryonic stem cells and may be mediated by DNAmethyltransferase 3ª // Proc Natl Acad Sci USA. – 2000. – Vol.97. – P.5237-5242.207.Rana SV. Perspectives in endocrine toxicity of heavy metals--a review // Biol Trace ElemRes. – 2014. – Vol.160(1). – P.1-14.208.Razin A, Riggs AD. DNA methylation and gene function // Science. – 1980. – Vol.210. –P.604-610.209.Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development //Nature. – 2007.
– Vol.447. – P.425-432.210.Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development //Science. – 2001. – Vol.293. – P.1089–1093.211.Reik W, Surani MA. Germline and Pluripotent Stem Cells. Cold Spring Harb Perspect Biol.2015;7:pii: a019422.212.Rotroff DM, Joubert BR, Marvel SW, Haberg SE, Wu MC, et al. Maternal smoking impactskey biological pathways in newborns through epigenetic modification in utero // BMCGenom. – 2016. – Vol.17. – P.976.213.Rougier N, Bourc’his D, Molina Gomes D et al.
Chromosome methylation pattern duringmammalian preimplantation development // Genes and Development. – 1998. – Vol.12. –P.2108-2113.214.Saitou M. Specification of the germ cell lineage in mice // Front Biosci. – 2009. – Vol.14. –P.1068-1087.215.Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse preimplantationdevelopment and primordial germ cells // Development.
– 2012. – Vol.139. – P.15-31.216.Saitou M, Payer B, Lange UC, Erhardt S, Barton SC, Surani MA. Specification of germ cellfate in mice // Philos Trans R Soc Lond B Biol Sci. – 2003. – Vol.358(1436). – P.1363-1370.217.Santos F, Dean W. Using immunofluorescence to observe methylation changes inmammalian preimplantation embryos // Methods Mol Biol. – 2006. – Vol.325. – P.129-137.121218.Schlatt S, Weinbauer GF. Immunohistochemical localization of proliferating cell nuclearantigen as a tool to study cell proliferation in rodent and primate testes // Int J Androl.
– 1994.– Vol.17. – P.214-222.219.Schwender K, Holtkotter H, Johann KS, Glaub A, Schurenkamp M, et al. Sudden infantdeath syndrome: exposure to cigarette smoke leads to hypomethylation upstream of thegrowth factor independent 1 (GFI1) gene promoter // Forensic Sci Med Pathol. – 2016. –Vol.12. – P.399-406.220.Seisenberger S, Andrews S, Krueger F, et al. The dynamics of genome-wide DNAmethylation reprogramming in mouse primordial germ cells // Molecular Cell. – 2012. –Vol.48. – P.849-862.221.Senner CE. The role of DNA methylation in mammalian development // Reprod BiomedOnline. – 2011. – Vol.22(6). – P.529-535.222.Senut MC, Sen A, Cingolani P, Shaik A, et al.
Lead exposure disrupts global DNAmethylation in human embryonic stem cells and alters their neuronal differentiation //Toxicological Science. – 2014. – Vol.139. – P.142-161.223.Sharpe RM, McKinnell C, Kivlin C, Fisher JS. Proliferation and functional maturation ofSertolicells, and their relevance to disorders of testisfunction in adulthood. // Reproduction. –2003. – Vol.125.
– P.769-784.224.Shi L, Wu J. Epigenetic regulation in mammalian preimplantation embryo development //Reprod Biol Endocrinol. – 2009. – Vol.5. – P.1-11.225.Shedlovsky A, Brenner S. A chemical basis for the host-induced modification of T-evenbacteriophages // Proc Natl Acad Sci USA. – 1963. – Vol.50. – P.300-305.226.Shen L, Zhang Y. 5-Hydroxymethylcytosine: generation, fate, and genomic distribution //Curr Opin Cell Biol. – 2013.
– Vol.25(3). – P.289-296.227.Shi W, Dirim F, Wolf E, Zakhartchenko V, Haaf T. Methylation reprogramming andchromosomal aneuploidy in in vivo fertilized and cloned rabbit preimplantation embryos //Biol Reprod. – 2004. – Vol.71. – P.340-347.228.Skryabin NA, Tolmacheva EN, Lebedev IN, Zavyalova MV, Slonimskaya EM,Cherdyntseva NV. Dynamics of aberrant methylation of functional groups of genes inprogression of breast cancer // Molecular Biology. – 2013.