Диссертация (1145446), страница 45
Текст из файла (страница 45)
– V. 1. – P. 3-10.27412. Atkins P., Overton T., Rourke J., Weller M., Armstrong F. Shriver & Atkins’Inorganic Chemistry. – Oxford: University Press, 2010. – Fifth Edition. – 824 p.13. Goldschmidt V.M. Die Gesetze der Krystallochemie // Naturwissenschaften. –1926. – V. 14. – P. 477-485.14.
Александров K.C., Безносиков Б.В. Перовскитоподобные кристаллы. –Новосибирск: Наука. СП РАН, 1997. – 216 с.15. Lufazo M.W., Barnes P.W., Woodward P.M. Structure prediction of ordered anddisordered multiple octahedral cation perovskites using SPuDS // Acta Cryst. B. –2006. – V.
62. – P. 397-410.16. Zhang H., Li N., Li K., Xue D. Structural stability and formability of ABO3–typeperovskite compounds // Acta Cryst. B. – 2007. – V. 63. – P. 812-818.17. Glazer A.M. Simple ways of determing perovskite structure // Acta Cryst.
A. –1975. – V. 31. – P. 756–762.18. Ritter C., Radaelli P.G., Lees M.R., Barratt J., Balakrishnan G., Paul D.McK. Anew monoclinic perovskite allotrope in Pr0.6Sr0.4MnO3 // J. Solid State Chem. –1996. – V. 127. – P. 276-282.19. Howard C.J., Stokes H.T. Group–theoretical analysis of octahedral tilting inperovskites // Acta Crystallogr. B. – 1998. – V. 54. – P.
782–789.20. Stokes H.T., Kisi E.H., Hatch D.M., Howard C.J. Group–theoretical analysis ofoctahedral tilting in ferroelectric perovskites perovskites // Acta Crystallogr. B. –2002. – V. 58. – P. 934-938.21. Lunkenheimer P., Loidl A., Ottermann C.R., Bange K. Correlated barrier hoppingin NiO films // Phys. Rev. B. – 1991.
– V. 44. – P. 5927-5930.22. Duffy D.M., Tasker P.W. A calculation of the formation energies of intrinsicdefects near grain boundaries in NiO // Philos. Mag. A. – 1984. – V. 50. – P. 143154.23. Battle P.D., Bennett J.E., Sloan J., Tilley R.J.D., Vente J.F. A–site cation–vacancy ordering in Sr1–3x/2LaxTiO3: a study by HRTEM // J. Solid State Chem. –2000. – V. 149. – P. 360-369.27524. Rao C.N.R., Gopalakrishman J.
New directions in solid state chemistry. –Cambridge University Press: Cambridge, New York, Melbourne, 1997. – 551 p.25. Trunov V.K., Averina I.M., Evdokimov A.A., Frolov A.M. Refinement of thestructure of La0.33NbO3// Kristallografiya. – 1981.
– V. 26. – P. 189-191.26. Vogt U.F., Sfeir J., Richter J., Soltmann C., Holtappels P. А–site substitutedlanthanum strontium ferrites as electrode materials for electrochemical applications// Pure Appl. Chem. – 2008. – V. 80. – P. 2543-2552.27. Liu Z., Cheng L.Z., Han M.F. A-site deficient Ba1–xCo0.7Fe0.2Ni0.1O3– cathode forintermediate temperature SOFC // J. Power Sources. – 2011. – V. 196. – P. 868871.28. Tao S., Irvine J.T.S. A redox–stable efficient anode for solid–oxide fuel cells //Nature Mater. – 2003. – V. 2. – P.
320-323.29. Tao S., Irvine J.T.S. Phase transition in perovskite oxide La0.75Sr0.25Cr0.5Mn0.5O3–observed by in situ high–temperature neutron powder diffraction // Chem. Mater. –2006. – V. 18. – P. 5453-5460.30. Striker T., Ruud J.A., Gao Y., Heward W.J., Steinbruchel C. A–site deficiency,phase purity and crystal structure in lanthanum strontium ferrite powders // SolidState Ionics.
– 2007. – V. 178. – P. 1326-1336.31. Knudsen J., Friehling P.B., Bonanos N. Effect of A–site stoichiometry on phasestability and electrical conductivity of the perovskite La s(Ni0.59Fe0.41)O3– and itscompatibility with (La0.85Sr0.15)0.91MnO3– and Zr0.85Y0.15O2.925 // Solid State Ionics.– 2005. – V. 176. – P. 1563-1569.32. Takeda Y., Nakai S., Kojima T., Kanno R., Imanishi N., Shen G., Yamamoto O.,Mori M., Asakawa C., Abe T.
Phase relation in the system (La1–xAx)1–yMnO3+z(A=Sr and Ca) // Mater. Res. Bull. – 1991. – V. 26. – P. 153-162.33. Nowotny J., Rekas M. Defect chemistry of (La,Sr)MnO3 // J. Am. Ceram. Soc. –1998. – V. 81. – P. 67-80.34. Poulsen F.W. Defect chemistry modelling of oxygen–stoichiometry, vacancyconcentrations, and conductivity of (La1–xSrx)MnO3± // Solid State Ionics. – 2000.– V. 129.
– P. 145-162.27635. Mai A., Haanappel V.A.C., Uhlenbruck S., Tietz F., Stover D. Ferrite–basedperovskites as cathode materials for anode–supported solid oxide fuel cells: Part I.Variation of composition // Solid State Ionics. – 2005. – V. 176. – P. 1341-1350.36. Simner S., Anderson M., Bonnett J., Stevenson J. Enhanced low temperaturesintering of (Sr, Cu)–doped lanthanum ferrite SOFC cathodes // Solid State Ionics.– 2004. – V. 175.
– P. 79-81.37. Huang X., Liu J., Lu Z., Liu W., Pei L., He T., Liu Z., Su W. Properties ofnonstoichiometric Pr0.6−xSr0.4MnO3 as the cathodes of SOFCs // Solid State Ionics.– 2000. – V. 130. – P. 195-201.38. Yakovlev S.O., Kharton V.V., Naumovich E.N., Zekonyte J., Zaporojtchenko V.,Kovalevsky A.V., Yaremchenko A.A., Frade J.R. Defect formation and transportin La0.95Ni0.5Ti0.5O3−δ // Solid State Sciences. – 2006. – V. 8. – P. 1302-1311.39. Schachtner, R., Ivers–Tiffee, E., Weppner, W., Manner, R.
and Wersing, W.Investigations on stoichiometric and substoichiometric La1–x–γSrxMnO3–δ used ascathode material in the sold oxide fuel cell // Ionics. – 1995. – V. 1. – P.63-69.40. Zhang Z., Howard C.J., Knight K.S., Lumpkin G.R. Structures of the cation–deficient perovskite Nd0.7Ti0.9Al0.1O3 from high–resolution neutron powderdiffraction in combination with group–theoretical analysis // Acta Cryst. B. – 2006.V. 62.
– P. 60-67.41. Chiba R., Yoshimura F., Sakurai Y. An investigation of LaNi1–xFexO3 as acathode material for solid oxide fuel cells // Solid State Ionics. – 1999. – V. 124. –P. 281-288.42. Falcon H., Goeta A.E., Punte G., Carbonio R.E. Crystal structure refinement andstability of LaFexNi1–xO3 solid solutions // J. Solid State Chem.
– 1997. – V. 133. –P. 379-385.43. Shannon, R.D. Revised effective ionic radii and systematic studies of interatomicdistances in halides and chaleogenides // Acta Crystallogr. A. – 1976 – V. 32. – P.751-767.27744. Rao C.N.R., Gopalakrishnan J., Vidyasagar K. Superstructures, ordered defectsand nonstoichiometry in metal oxides of perovskite and related structures // IndianJ.
Chem. Sect. A. – 1984. – V. 23. – P. 265-284.45. Rauser G., Kemmler–Sack S. Über Ba2Ce0,75SbO6 – den ersten Vertreter einerweiteren Perowskitvariante // Z. Anorg. Allg. Chem. – 1978. – V. 439. – P. 255258.46. Treiber U., Kemmler-Sack S. Über geordnete Perowskite mit Kationenfehlstellen.VI. Strukturbestimmung an Ba2Ce □1/4SbVO6 // Z. Anorg. Allg. Chem. – 1980.
–V. 463. – P. 132-136.47. Kemmler–Sack S., Jooss I. Über Hexagonale Perowskite mit Kationenfehlstellen.I. Verbindungen vom Typ Ba2B □2/3ReVIIO6 // Z. Anorg. Allg. Chem. – 1978. – V.439. – P. 232-236.48. Bradley K.A., Collins C., Dyer M.S., Claridge J.B., Darling G.R., Rosseinsky M.J.Reported and predicted structures of Ba(Co,Nb)1–xO3 hexagonal perovskite phases// Phys. Chem.
Chem. Phys. – 2014. – V. 16. – P. 21073-21081.49. Tofield B.C., Scott W.R. Oxidative nonstoichiometry in perovskites, anexperimental survey; the defect structure of an oxidized lanthanum manganite bypowder neutron diffraction // J. Solid State Chem. – 1974. – V. 10. – P. 183-194.50. Van Roosmalen J.A.M., Cordfunke E.H.P., Helmholdt R.B., Zandbergen H.W.The defect chemistry of LaMnО3±: 2. Structural aspects of LaMnО3+ // J. SolidState Chem.
– 1994. – V. 110. – P. 100-105.51. Takano M., Takeda Y., Okada H., Miyamoto M., Kusaka T. ACuО2 (A: alkaline–earth) crystallizing in a layered structure // Physica С. – 1989. – V. 159. – P. 375378.52. Абакумов A.M., Антипов Е.В., Ковба Л.М., Копнин Е.М., Путилин С.Н.,Шпанченко Р.В. Сложные оксиды со структурами когерентного срастания //Успехи химии.
– 1995. – Т. 64. – С. 769-779.53. Александров K.C., Безносиков Б.В. Иерархия перовскитоподобныхкристаллов // Физика твердого тела. – 1997. – Т. 39. – С. 785-808.27854. Ruddlesden S.N., Popper P. The compound Sr3Ti2O7 and its structure // ActaCrystallogr. – 1958. – V. 11. – P. 54-55.55. Безносиков Б.В., Александров К.С. Перовскитоподобные кристаллы рядаРуддлесдена–Поппера // Кристаллография.
– 2000. – Т. 45. – С. 864-870.56. Tsujimoto Y., Tassel C., Hayashi N., Watanabe Т., Kageyama H., Yoshimura К.,Takano M., Ceretti M., Ritter C, Paulus W. Infinite–layer iron oxide with asquare–planar coordination // Nature. – 2007. – V. 450. – P. 1062-1065.57. Tarancon A., Burriel M., Santiso J., Skinner S.J., Kilner J.A. Advances in layeredoxide cathodes for intermediate temperature solid oxide fuel cells // J.
Mater.Chem. – 2010. – V. 20. – P. 3799-3813.58. Matsuura T., Tabuchi J., Mizusaki J., Yamamuchi S., Fueki, K. Electricalproperties of La2–xSrxCoO4–: Structure, electrical conductivity, and Seebeckcoefficient of single crystals x = 0.0, 0.5, 1.0 and 1.5 // J. Phys. Chem. Solids. –1988. – V. 49. – P. 1403-1408.59. Miyoshi S., Furuno T., Sangoanruang O., Matsumoto H., Ishihara T. Mixedconductivity and oxygen permeability of doped Pr2NiO4–based oxides // J.Electrochem. Soc.
– 2007. – V. 154. – P. B57-B62.60. Kushima A., Parfitt D., Chroneos A., Yildiz B., Kilner J.A., Grimes R.W.Interstitialcy diffusion of oxygen in tetragonal La2CoO4+ // Phys. Chem. Chem.Phys. – 2011. – V. 13. – P. 2242-2249.61. Yashima M., Yamada H., Nuansaeng S., Ishihara T. Role of Ga3+ and Cu2+ in thehigh interstitial oxide–ion diffusivity of Pr2NiO4–based oxides: design concept ofinterstitial ion conductors through the higher–valence d10 dopant and Jahn–Tellereffect // Chem. Mater. – 2012. – V. 24. – P.
4100-4113.62. Grimaud A., Mauvy F., Bassat J.M., Fourcade S., Marrony M., Grenier J.C.Hydration and transport properties of the Pr2–xSrxNiO4+ compounds as H+–SOFCcathodes // J. Mater. Chem. – 2012. – V. 22. – P. 16017-16025.63. Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. – Москва: Химия,КолосС, 2006.