Диссертация (1145446), страница 46
Текст из файла (страница 46)
– 672 с.27964. da Rosa A.V. Fundamentals of renewable energy processes. – Oxford: Elsevier,2012. – Third Edition. – 884 p.65. Mehta V., Cooper J.S. Review and analysis of PEM fuel cell design andmanufacturing // J. Power Sources. – 2003. – V. 114. – P. 32-53.66. van Gerwen R.J.F. Systems and Applications // In: High–temperature solid oxidefuel cells: fundamentals, design and applications. Eds.: S.C. Singhal, K. Kendall. –Oxford: Elsevier, 2003. – First Edition. – P.
363-392.67. Lamp P., Tachtler J., Finkenwirth O., Mukerjee, S., Shaffer S. Development of anAuxiliary Power Unit with Solid Oxide Fuel Cells for Automotive Applications //Fuel Cells. – 2003. – V. 3. – P. 146-152.68.Твердооксидныетопливныеэлементы:проблемы,путирешения,перспективы развития и коммерциализации. Аналитический обзор.
– Москва:ФГБНУ НИИ РИНКЦЭ, Министерство образования и науки Российскойфедерации, 2015. – 21 с.69. Quadakkers W.J., Abellan J.P., Shemet V., Singheiser L. Metallic interconnectsfor solid oxide fuel cells – a review // Materials at High Temperatures. – 2003. –V. 20. – P. 115-127.70. Hilpert K., Quadakkers W.J., Singheiser L. Interconnects // in: Handbook of FuelCells – Fundamentals, Technology and Applications.
Eds.: W. Vielstich, H.A.Gasteiger, A. Lamm. – Chichester: John Wiley and Sons Ltd., 2003. – V. 4. – P.1037-1054.71. Fergus J.W. Metallic interconnects for solid oxide fuel cells // Mater. Sci. Eng. A.– 2005. – V. 397. – P. 271-283.72. Nagai H., Fujikawa T., Shoji K. Electrical conductivity of Cr 2O3 doped withLa2O3, Y2O3 and NiO // Trans. Jpn. Inst. Met. – 1983. – V. 24. – P. 581-588.73. Huang K., Hou P.Y., Goodenough J.B. Reduced area specific resistance for iron–based metallic interconnects by surface oxide coatings // Mater.
Res. Bull. – 2001.– V. 36. – P. 81-95.28074. Da Conceição L., Dessemond L., Djurado E., Souza M.M.V.M. La0.7Sr0.3MnO3–coated SS444 alloy by dip–coating process for metallic interconnect supportedsolid oxide fuel cells // J. Power Sources. – 2013. – V.
241. – P. 159-167.75. Sakai N., Horita T., Xiong Y.P., Yamaji K., Kishimoto H., Brito M.E., YokokawaH., Maruyama T. Structure and transport property of manganese–chromium–ironoxide as a main compound in oxide scales of alloy interconnects for SOFCs //Solid State Ionics. – 2005. – V. 176. – P. 681- 686.76. Larring Y., Norby T. Spinel and perovskite functional layers between planseemetallic interconnect (Cr–5wt%Fe–1wt%Y2O3) and ceramic (La0.85Sr0.15)0.91MnO3cathode materials for solid oxide fuel cells // J.
Electrochem. Soc. – 2000. – V.147. – P. 3251-3256.77. Montero X., Tietz F., Sebold D., Buchkremer H.P., Ringuedec A., Cassirc M.,Laresgoiti A., Villarreal I. MnCo1.9Fe0.1O4 spinel protection layer on commercialferritic steels for interconnect applications in solid oxide fuel cells // J. PowerSources.
– 2008. – V. 184. – P. 172-179.78. Yang Z., Xia G.G., Li X.H., Stevenson J.W. (Mn,Co)3O4 spinel coatings onferritic stainless steels for SOFC interconnect applications // Int. J. HydrogenEnergy. – 2007. – V. 32. – P. 3648-3654.79. Yang Z., Xia G., Stevenson J.W. Mn1.5Co1.5O4 Spinel protection layers on ferriticstainless steels for SOFC interconnect applications // Electrochem. Solid–StateLett. – 2005. – V.
8. – P. A168-A170.80. Bertoldi M., Zandonella T., Montinaro D., Sglavo V.M., Fossati A., Lavacchi A.,Giolli C., Bardi U. Protective coatings of metallic interconnects for IT–SOFCapplication // J. Fuel Cell Sci. Technol. – 2008. – V. 5. – P. 011001-01–011001-5.81.
Бредихин С.И., Жохов А. А., Фролова Е. А., Ледуховская Н. В., КурицынаИ. Е., Синицын В. В., Коровкин Е. В. Защитные покрытия на основе Mn–Coшпинели для токовых коллекторов ТОТЭ // Электрохимия. – 2009. – Т. 45. –С. 555-561.82. Miguel–Pérez V., Martínez–Amesti A., Nó M.L., Larrañaga A., Arriortua M.I.The effect of doping (Mn,B)3O4 materials as protective layers in different metallic281interconnects for solid oxide fuel cells // J. Power Sources. – 2013.
– V. 243. – P.419-430.83. Fujita K., Ogasawara K., Matsuzaki Y., Sakurai T. Prevention of SOFC cathodedegradation in contact with Cr–containing alloy // J. Power Sources. – 2004. – V.131. – P. 261-269.84. Ming–Jui T., Chun–Lin C., Shyong L. La0.6Sr0.4Co0.2Fe0.8O3 protective coatingsfor solid oxide fuel cell interconnect deposited by screen printing // J. AlloyCompd. – 2010. – V. 489. – P.
576-581.85. Yang Z., Xia G.G., Maupin G.D., Stevenson J.W. Evaluation of perovskiteoverlay coatings on ferritic stainless steels for SOFC interconnect applications // J.Electrochem. Soc. – 2006. – V. 153. – P. A1852-A1858.86. Lacey R., Pramanick A., Lee J.C., Jung J.I., Jiang B., Edwards D.D., Naum R.,Misture S.T. Evaluation of Co and perovskite Cr–blocking thin films on SOFCinterconnects // Solid State Ionics.
– 2010. – V. 181. – P. 1294-1302.87. Chu C.L., Wang J.Y., Lee S. Effects of La0.67Sr0.33MnO3 protective coating onSOFC interconnect by plasma–sputtering // Int. J. Hydrogen Energy. – 2008. – V.33. – P. 2536-2546.88. Shong W.J., Liu C.K., Chen C.Y., Peng, C.C., Tu, H.J., Fey, G.T.K., Lee, R.Y.,Kao H.M. Effects of lanthanum–based perovskite coatings on the formation ofoxide scale for ferritic SOFC interconnect // Mater.
Chem. and Phys. – 2011. – V.127. – P. 45-50.89. Brylewski T., Przybylski K., Morgiel J. Microstructure of Fe–25Cr/(La,Ca)CrO3composite interconnector in solid oxide fuel cell operating conditions // MaterChem and Physics. – 2003. – V. 81. – P. 434-437.90. Yoo Y., Dauga M., The effect of protective layers formed by electrophoreticdeposition on oxidation and performance of metallic interconnects // In:Proceedings of the 7th International Symposium on SOFC.
Eds.: H. Yokokawa,S.C. Singhal. The Electrochemical Society Proceedings, Pennington, NJ. USA. –2001. – V. 2001-16. – P. 837-846.28291. Zhu J.H., Zhang Y., Basu A., Lu Z.G., Paranthaman M., Lee D.F., Payzant E.A..LaCrO3–based coatings on ferritic stainless steel for solid oxide fuel cellinterconnect applications //J. Surface and Coating Technology. – 2004.
– V. 177–178. – P. 65-72.92. Basu R.N., Tietz F., Teller O., Wessel E., Buchkremer H.P., Stöver D.,LaNi0.6Fe0.4O3 as a cathode contact material for solid oxide fuel cells // J. SolidState Electrochem. – 2003. – V. 7. – P. 416-420.93. Morán–Ruiz A., Vidal K., Larrañaga A., Porras–Vázquez J.M., Slater P.R.,Arriortua M.I. Evaluation of using protective/conductive coating on Fe–22Cr meshas a composite cathode contact material for intermediate solid oxide fuel cells //Int. J. Hydrogen Energy. – 2015. – V.
40. – P. 4804-4818.94. Crofer22APU, Material Data Sheet No. 8005. – ThyssenKrupp VDM, Werdohl,Germany. – June 2004 Edition.95. Abellan J.P., Shemet V., Tietz F., Singheiser L., Quadakkers W.J., Gil A. Ferriticsteel interconnect for reduced temperature SOFC. // Proceedings of the 7thInternational Symposium on SOFC. Eds.: H. Yokokawa, S.C. Singhal. TheElectrochemical Society Proceedings, Pennington, NJ.
USA. – 2001. – V. 2001-16.– P. 811-819.96. Teraoka Y., Nobunaga T., Okamoto K., Miura N., Yamazoe N. Influence ofconstituent metal cations in substituted LaCoO3 on mixed conductivity and oxygenpermeability // Solid State Ionics. – 1991. – V. 48. – P. 207-212.97. Ullmann H., Trofimenko N., Tietz F., Stover D., Ahmad–Khanlou A. Correlationbetween thermal expansion and oxide ion transport in mixed conductingperovskite–type oxides for SOFC cathodes // Solid State Ionics. – 2000.
– V. 138.– P. 79-90.98.ПерфильевМ.В.,ДеминА.К.,КузинБ.Л.,ЛипилинА.С.Высокотемпературный электролиз газов. – Москва: Наука, 1988. – 232 с.99. Fergus J.W. Electrolytes for solid oxide fuel cells // J. Power Sources. – 2006. –V. 162. – P. 30-40.283100.ШкеринС.Н.Рольприповерхностногослоятвердогокислородпроводящего электролита в кинетике процессов на кислородномэлектроде: Дис.
д–ра хим. наук. – Екатеринбург, 2006. – 249 с.101. Jacobson A.J. Materials for solid oxide fuel cells // Chem. Mater. – 2010. – V.22. – P. 660-674.102. Dalslet B., Blennow P., Hendriksen P.V., Bonanos N., Lybye D., Mogensen M.Assessment of doped ceria as electrolyte // J. Solid State Electrochem. – 2006. – V.10. – P. 547-561.103. Ярославцев И.Ю. Электрохимическое поведение кислородных электродов изплатины и смешанных проводников (La,Sr)MnO3 и (La,Sr)(Fe,Co)O3 в контактес твердыми электролитами на основе LaGaO3 и CeO2: Дис. канд. хим. наук.
–Екатеринбург, 2006. – 123 с.104. Бронин Д.И. Кинетика электродных процессов в электрохимическихсистемах с твердыми оксидными электролитами: Дис. д–ра хим. наук. –Екатеринбург, 2007. – 283 с.105. Ishihara T. Oxide ion conductivity in perovskite oxide for SOFC electrolyte. //in: Perovskite oxide for solid oxide fuel cells. Ed. T. Ishihara. – Dordrecht:Springer, 2009. – P. 65-94.106. Тиунова О.В., Задорожная О.Ю., Непочатов Ю.К., Бурмистров И.Н.,Курицына И.E., Бредихин С.И. Керамические мембраны на основе скандий–стабилизированного ZrO2, полученные методом пленочного литья //Электрохимия.
– 2014. – Т. 50. – С. 801-807.107. Yamaji K., Horita T., Ishikawa M., Sakai N., Yokokawa H. Chemical stabilityof the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere // Solid StateIonics. – 1999. – V. 121. – P. 217-224.108. Lacorre, P.; Goutenoire, F.; Bohnke, O.; Retoux, R.; Laligant, Y. Designing fastoxide–ion conductors based on La2Mo2O9 // Nature. – 2000. – V. 404. – P.
856858.284109. Will J., Mitterdorfer A., Kleinlogel C., Perednis D., Gauckler L.J. Fabrication ofthin electrolytes for second–generation solid oxide fuel cells // Solid State Ionics. –2000. – V. 131. – P. 79-96.110. Huang H., Nakamura M., Su P., Fasching R., Saito Y., Prinz F.B. High–performance ultrathin solid oxide fuel cells for low–temperature operation // J.Electrochem. Soc.
– 2007. – V. 154. – P. B20-B24.111. Nandasiri M.I., Thevuthasan S. State–of–the–Art Thin Film Electrolytes forSolid Oxide Fuel Cells // In: Thin film structures in energy applications.Ed. S.B.K. Moorthy. – Cham: Springer, 2015. – P. 167-214.112. Mori M., Yamamoto T., Itoh H., Inaba H., Tagawa T.
Thermal expansion ofnickel–zirconia anodes in solid oxide fuel cells during fabrication and operation //J. Electrochem. Soc. – 1998. – V. 145. – P. 1374-1381.113. Wang S., Katsuki M., Hashimoto T., Dokiya M. Expansion behavior ofCe1–yGdyO2.0–0.5y– under various oxygen partial pressures evaluated by HTXRD //J. Electrochem. Soc. – 2003. – V. 150. – P. A952-A958.114. Corbel G., Mestiri S., Lacorre P. Physicochemical compatibility of CGOfluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide–ion conductor // Solid State Sciences. – 2005.