Диссертация (1143492), страница 37
Текст из файла (страница 37)
Bellouquid, Y. Tao, M. Winkler. Toward a mathematical theory ofKeller-Segel models of pattern formation in biological tissues. Math. Models MethodsAppl. Sci., 25:1663–1763, 2015.[63] N. Bellomo, A. Elaiw, A. M. Althiabi, M. A. Alghamdi. On the interplay betweenmathematics and biology: Hallmarks toward a new systems biology. Phys. Life Rev.,12:44–64, 2015.[64] R. B. Bird, W.
E. Stewart, E. N. Lightfoot. Transport Phenomena. Wiley, New York,2002.[65] A. Borovoi. On the extinction of radiation by a homogeneous but spatially correlatedrandom medium: comment. J. Opt. Soc. Am. A, 19:2517–2520, 2002.[66] C. D. Brandle. Czochralski growth of oxides. J. Crystal Growth, 264:593–604, 2004.[67] P. S.
Brantley, E. W. Larsen. The simplified 3 approximation. Nucl. Sci. Eng., 134:1–21, 2000.[68] G. A. Breed, P. M. Severns, A. M. Edwards. Apparent power-law distributions inanimal movements can arise from intraspecific interactions. J. R. Soc. Interface, 12(103):20140927, 2014.215[69] C. R. Brennan, R. L. Miller, K. A. Mathews. Split-cell exponential characteristictransport method for unstructured tetrahedral meshes. Nucl. Sci.
Eng., 138:26–44,2001.[70] P. C. Bressloff. Stochastic Processes in Cell Biology. Springer, Cham, 2014.[71] P. C. Bressloff, J. M. Newby. Stochastic models of intracellular transport. Rev. Mod.Phys., 85:135–196, 2013.[72] R. Brittes, F. H. R. França. A hybrid inverse method for the thermal design of radiativeheating systems. Int. J. Heat Mass Transfer, 57:48–57, 2013.[73] O. Budenkova, M. G.
Vasilyev, S. A. Rukolaine, V. S. Yuferev. Radiative heat transferin axisymmetric domains of complex shape with Fresnel boundaries. In P. Lybaert,V. Feldheim, D. Lemonnier, N. Selçuk, editors, Computational Thermal Radiationin Participating Media. Proceedings of the Eurotherm Seminar 73, Mons, Belgium,volume 11 of Eurotherm series, pages 87–96. Elsevier, Paris, 2003.[74] O. Budenkova, M. Vasiliev, V. Yuferev, V. Kalaev.
Effect of internal radiation on thesolid–liquid interface shape in low and high thermal gradient czochralski oxide growth.J. Crystal Growth, 303:156–160, 2007.[75] O. N. Budenkova, V. M. Mamedov, M. G. Vasiliev, V. S. Yuferev, Yu. N. Makarov.Effect of internal radiation on the crystal–melt interface shape in czochralski oxidegrowth. J. Crystal Growth, 266:96–102, 2004.[76] O. N.
Budenkova, M. G. Vasilyev, S. A. Rukolaine, V. S. Yuferev. Radiative heattransfer in axisymmetric domains of complex shape with Fresnel boundaries. J. Quant.Spectrosc. Radiat. Transfer, 84:451–463, 2004.[77] M. Burger, S. J. Osher. A survey on level set methods for inverse problems and optimaldesign. Eur. J. Appl. Math., 16:263–301, 2005.[78] D. Calvetti, G. Landi, L. Reichel, Sgallari. F. Non-negativity and iterative methodsfor ill-posed problems. Inverse Problems, 20:1747–1758, 2004.[79] J. Camacho.
Purely global model for Taylor dispersion. Phys. Rev. E, 48:310–321,1993.[80] B. G. Carlson. Transport theory: Discrete ordinates quadrature over the unit sphere.Technical Report LA-4554, Los Alamos Scientific Laboratory, Los Alamos, 1970.216[81] B. G. Carlson, K. D. Lathrop. Transport theory — the method of discrete ordinates. InH. Greenspan, C. N.
Kelber, D. Okrent, editors, Computing methods in reactor physics,pages 165–266. Gordon and Breach, New York, 1968.[82] B. G. Carlson, C. E. Lee. Mechanical quadrature and the transport equation. TechnicalReport LA-2573, Los Alamos Scientific Laboratory, Los Alamos, 1961.[83] CFD-ACE Theory Manual. CFD Research Corporation, Huntswill, 1998.[84] J. C. Chai, H.
S. Lee, S. V. Patankar. Ray effect and false scattering in the discreteordinates method. Numer. Heat Transfer B, 24(4):373–389, 1993.[85] J. C. Chai, H. S. Lee, S. V. Patankar. Finite volume method for radiation heat transfer.J. Thermophys. Heat Transfer, 8(3):419–425, 1994.[86] E. H. Chui, G. D. Raithby, P. M. J. Hughes. Prediction of radiative transfer incylindrical enclosures with the finite volume method. J. Thermophys. Heat Transfer,6:605–611, 1992.[87] P. J.
Coelho. The role of ray effects and false scattering on the accuracy of the standardand modified discrete ordinates methods. J. Quant. Spectrosc. Radiat. Transfer, 73(2):231–238, 2002.[88] P. J. Coelho. Advances in the discrete ordinates and finite volume methods for thesolution of radiative heat transfer problems in participating media. J. Quant. Spectrosc.Radiat. Transfer, 145:121–146, 2014.[89] P.
J. Coelho, M. G. Carvalho. A conservative formulation of the discrete transfermethod. J. Heat Transfer, 119(1):118–128, 1997.[90] W. T. Coffey, Yu. P. Kalmykov, J. T. Waldron. The Langevin Equation: WithApplications to Stochastic Problems in Physics, Chemistry and Electrical Engineering.World Scientific, Singapore, 2004.[91] K. J. Daun, J. R.
Howell. Inverse design methods for radiative transfer systems. J.Quant. Spectrosc. Radiat. Transfer, 93:43–60, 2005.[92] K. J. Daun, J. R. Howell, D. P. Morton. Geometric optimization of radiant enclosuresthrough nonlinear programming. Numer. Heat Transfer B, 43:203–219, 2003.[93] K. J. Daun, D. P. Morton, J. R. Howell. Geometric optimization of radiant enclosurescontaining specular surfaces. J.
Heat Transfer, 125:845–851, 2003.217[94] A. B. Davis, M. B. Mineev-Weinstein. Radiation propagation in random media: Frompositive to negative correlations in high-frequency fluctuations. J. Quant. Spectrosc.Radiat. Transfer, 112:632–645, 2011.[95] A. B. Davis, F. Xu. A generalized linear transport model for spatially correlatedstochastic media. J. Comput. Theor. Transp., 43:474–514, 2014.[96] F. L. de Sousa, F. M. Ramos, P. Paglione, R.
M. Girardi. New stochastic algorithmfor design optimization. AIAA Journal, 41(9):1808–1818, 2003.[97] M. C. Delfour, J.-P. Zolésio. Shapes and Geometries: Metrics, Analysis, DifferentialCalculus, and Optimization. SIAM, Philadelphia, 2011.[98] A.-T. Dinh, T. Theofanous, S. Mitragotri. A model for intracellular trafficking ofadenoviral vectors. Biophys.
J., 89:1574–1588, 2005.[99] M. Do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, EnglewoodCliffs, 1976.[100] O. Dorn, D. Lesselier. Level set methods for inverse scattering. Inverse Problems, 22:R67–R131, 2006.[101] J. J. Duderstadt, W. R. Martin. Transport Theory. Wiley, New York, 1979.[102] H. W. Engl, M.
Hanke, A. Neubauer. Regularization of Inverse Problems. Kluwer,Dordrecht, 1996.[103] R. Erban, H. G. Othmer. From signal transduction to spatial pattern formation inE. coli: A paradigm for multiscale modeling in biology. Multiscale Model. Simul., 3:362–394, 2005.[104] H. Erturk, O. A. Ezekoye, J.
R. Howell. The application of an inverse formulation inthe design of boundary conditions for transient radiating enclosures. J. Heat Transfer,124:1095–1102, 2002.[105] H. Erturk, O. A. Ezekoye, J. R. Howell. Comparison of three regularized solutiontechniques in a three-dimensional inverse radiation problem.
J. Quant. Spectrosc.Radiat. Transfer, 73:307–316, 2002.[106] L. C. Evans. Partial Differential Equations.Providence, 2010.American Mathematical Society,218[107] I. Yu. Evstratov, S. A. Rukolaine, V. S. Yuferev, M. G. Vasiliev, A. B. Fogelson, V. M.Mamedov, V. N. Shlegel, Ya. V. Vasiliev, Yu. N. Makarov. Global analysis of heattransfer in growing BGO crystals (Bi4 Ge3 O12 ) by low-gradient Czochralski method. J.Crystal Growth, 235:371–376, 2002.[108] A. Farahmand, S.
Payan, S. M. Hosseini Sarvari. Geometric optimization of radiativeenclosures using PSO algorithm. Int. J. Thermal Sci., 60:61–69, 2012.[109] S. Fedotov, A. Tan, A. Zubarev. Persistent random walk of cells involving anomalouseffects and random death. Phys. Rev. E, 91:042124, 2015.[110] W. A. Fiveland. Discrete ordinates solutions of the radiative transport equation forrectangular enclosures. J.
Heat Transfer, 106(4):699–706, 1984.[111] W. A. Fiveland. Discrete ordinate methods for radiative heat transfer in isotropicallyand anisotropically scattering media. J. Heat Transfer, 109(3):809–812, 1987.[112] W. A. Fiveland. Three-dimensional radiative heat transfer solutions by the discreteordinates method. J. Thermophys. Heat Transfer, 2(4):309–316, 1988.[113] W. A. Fiveland. The selection of discrete ordinate quadrature sets for anisotropicscattering. In Fundamentals of Radiation Heat Transfer, volume 160, pages 89–96.ASME HTD, 1991.[114] W.
A. Fiveland, J. P. Jessee. Comparison of discrete ordinates formulations forradiative heat transfer in multidimensional geometries. J. Thermophys. Heat Transfer,9(1):47–54, 1995.[115] J. B. J. Fourier.Cambridge, 2009.The Analytical Theory of Heat.Cambridge University Press,[116] F. H.
R. França, O. A. Ezekoye, J. R. Howell. Inverse boundary design combiningradiation and convection heat transfer. J. Heat Transfer, 123:884–891, 2001.[117] M. Frank, T. Goudon. On a generalized Boltzmann equation for non-classical particletransport. Kinet. Relat. Models, 3:395–407, 2010.[118] R. Friedrich, F. Jenko, A. Baule, S. Eule. Exact solution of a generalized KramersFokker-Planck equation retaining retardation effects. Phys. Rev. E, 74:041103, 2006.[119] R. Friedrich, F. Jenko, A. Baule, S. Eule.