Диссертация (1143492), страница 38
Текст из файла (страница 38)
Anomalous diffusion of inertial, weaklydamped particles. Phys. Rev. Lett., 96:230601, 2006.219[120] T. Fühner, T. Jung. Use of genetic algorithms for the development and optimizationof crystal growth processes. J. Crystal Growth, 266:229–238, 2004.[121] C. K. Garrett, C. D. Hauck.
A comparison of moment closures for linear kinetictransport equations: The line source benchmark. Transp. Theory Stat. Phys., 42:203–235, 2013.[122] E. M. Gelbard. Applications of spherical harmonics method to reactor problems.Technical Report WAPD-BT-20, Westinghouse Electric Corp. Bettis Atomic PowerLab., Pittsburgh, 1960.[123] E. M. Gelbard. Simplified spherical harmonics equations and their use in shieldingproblems. Technical Report WAPD-T-1182, Westinghouse Electric Corp. Bettis AtomicPower Lab., Pittsburgh, 1961.[124] E. M.
Gelbard. Applications of simplified spherical harmonics equations in sphericalgeometry. Technical Report WAPD-TM-294, Westinghouse Electric Corp. BettisAtomic Power Lab., Pittsburgh, 1962.[125] C. W. Groetsch. Inverse Problems in the Mathematical Sciences. Springer, Wiesbaden,1993.[126] I. A. Gula, A. M.
Samsonov. A model for the expression of gap genes based on theJeffreys type equation. Bioinformatics, 31:714–719, 2015.[127] R. A. Guyer, J. A. Krumhansl. Solution of the linearized phonon Boltzmann equation.Phys. Rev., 148:766–778, 1966.[128] R. A. Guyer, J. A. Krumhansl. Thermal conductivity, second sound, and phononhydrodynarmic phenomena in nonmetallic crystals. Phys.
Rev., 148:778–788, 1966.[129] K. P. Hadeler. Reaction transport systems in biological modelling. In V. Capasso,O. Diekmann, editors, Mathematics Inspired by Biology, volume 1714 of Lecture Notesin Mathematics, pages 95–150. Springer, Berlin, 1999.[130] M. Hanke. Conjugate Gradient Type Methods for Ill-Posed Problems. Wiley, NewYork, 1995.[131] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical aspects ofLinear Inversion. SIAM, Philadelphia, 1998.[132] J. Haslinger, R. A. E. Mäkinen. Introduction to Shape Optimization: Theory,Approximation, and Computation.
SIAM, Philadelphia, 2003.220[133] S. I. Heizler. Asymptotic telegrapher’s equation (1 ) approximation for the transportequation. Nucl. Sci. Eng., 166:17–35, 2010.[134] S. I. Heizler. The asymptotic telegrapher’s equation (1 ) approximation for timedependent, thermal radiative transfer. Transp. Theory Stat. Phys., 41:175–199, 2012.[135] F. Hettlich, W. Rundell. Iterative methods for the reconstruction of an inverse potentialproblem.
Inverse Problems, 12:251–266, 1996.[136] T. Hillen, H. G. Othmer. The diffusion limit of transport equations derived fromvelocity-jump processes. SIAM J. Appl. Math., 61:751–775, 2000.[137] R. S. Hoffmann, A. Seewald, P. S. Schneider, F. H. R. França. Inverse design ofthermal systems with spectrally dependent emissivities. Int.
J. Heat Mass Transfer,53(5):931–939, 2010.[138] S. M. Hosseini Sarvari, J. R. Howell, S. H. Mansouri. Inverse boundary designconduction-radiation problem in irregular two-dimensional domains. Numer. HeatTransfer B, 44(3):209–224, 2003.[139] S.
M. Hosseini Sarvari, S. H. Mansouri, J. R. Howell. Inverse boundary design radiationproblem in absorbing-emitting media with irregular geometry. Numer. Heat TransferA, 43:565–584, 2003.[140] J. R. Howell. Application of Monte Carlo to heat transfer problems. Adv. Heat Transfer,5:1–54, 1969.[141] J.
R. Howell. The Monte Carlo method in radiative heat transfer. J. Heat Transfer,120(3):547–560, 1998.[142] J. R. Howell, O. A. Ezekoye, J. C. Morales. Inverse design model for radiative heattransfer. J. Heat Transfer, 122:492–502, 2000.[143] J. R. Howell, R. Siegel, M. P. Mengüç. Thermal Radiation Heat Transfer.
Taylor &Francis, New York, 2010.[144] B. Hunter, Z. Guo. Comparison of quadrature schemes in dom for anisotropic scatteringradiative transfer analysis. Numer. Heat Transfer B, 63:485–507, 2013.[145] D. J. Hyde, J. S. Truelove. The discrete ordinates approximation for multidimensionalradiant heat transfer in furnaces. Technical Report AERE-R 8502, ThermodynamicsDivision, AERE Harwell, Oxfordshire, 1977.221[146] V. Isakov.
Inverse Problems for Partial Differential Equations. Springer, New York,2006.[147] K. Ito, K. Kunish, Z. Li. Level-set function approach to an inverse interface problem.Inverse Problems, 17:1225–1242, 2001.[148] H. Jeffreys. The Earth, Its Origin, History and Physical Constitution.
CambridgeUniversity Press, Cambridge, 1929.[149] E. Jones, T. Oliphant, P. Peterson, et al. SciPy: Open source scientific tools for Python,2001– [Электронный ресурс]. Режим доступа: http://www.scipy.org/.[150] D. D. Joseph, L. Preziosi. Heat waves. Rev. Mod. Phys., 61:41–73, 1989.[151] D. D. Joseph, L. Preziosi. Addendum to the paper “Heat waves”. Rev.
Mod. Phys., 62:375–391, 1990.[152] D. Jou, J. Casas-Vázquez, G. Lebon. Extended Irreversible Thermodynamics. Springer,New York, 2010.[153] D. Jou, J. Casas-Vázquez, M. Criado-Sancho. Thermodynamics of Fluids Under Flow.Springer, Dordrecht, 2011.[154] V. M. Kenkre, E. W. Montroll, M. F. Shlesinger. Generalized master equations forcontinuous-time random walks.
J. Stat. Phys., 9:45–50, 1973.[155] J. Kevorkian, J. D. Cole. Multiple Scale and Singular Perturbation Methods. Springer,New York, 1996.[156] M. Y. Kim. Assessment of the axisymmetric radiative heat transfer in a cylindricalenclosure with the finite volume method. Int. J. Heat Mass Transfer, 51:5144–5153,2008.[157] M. Y.
Kim, S. W. Baek. Modeling of radiative heat transfer in an axisymmetriccylindrical enclosure with participating medium. J. Quant. Spectrosc. Radiat. Transfer,90(3):377–388, 2005.[158] A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Springer,New York, 2011.[159] R. Koch, R. Becker. Evaluation of quadrature schemes for the discrete ordinatesmethod. J. Quant.
Spectrosc. Radiat. Transfer, 84:423–435, 2004.222[160] R. Koch, W. Krebs, S. Wittig, R. Viscanta. Discrete ordinates quadrature schemes formultidimensional radiative transfer. J. Quant. Spectrosc. Radiat. Transfer, 53:353–372,1995.[161] D. Kondepudi, I. Prigogine. Modern Thermodynamics: From Heat Engines toDissipative Structures. Wiley, Chichester, 1998.[162] C. Körner, H. W.
Bergmann. The physical defects of the hyperbolic heat conductionequation. Appl. Phys. A, 67:397–401, 1998.[163] A. B. Kostinski. On the extinction of radiation by a homogeneous but spatiallycorrelated random medium. J. Opt. Soc. Am. A, 18:1929–1933, 2001.[164] A. B. Kostinski. On the extinction of radiation by a homogeneous but spatiallycorrelated random medium: reply to comment. J. Opt. Soc. Am. A, 19:2521–2525,2002.[165] M. A. Krasnoselskii. Positive solutions of operator equations. P. Noordhoff, Groningen,1964.[166] D. Lacroix, G.
Parent, F. Asllanaj, G. Jeandel. Coupled radiative and conductive heattransfer in a non-grey absorbing and emitting semitransparent media under collimatedradiation. J. Quant. Spectrosc. Radiat. Transfer, 75:589–609, 2002.[167] E. W. Larsen, J. B. Keller. Asymptotic solution of neutron transport problems forsmall mean free paths. J. Math. Phys., 15:75–81, 1974.[168] E. W. Larsen, J. E.
Morel. Advances in discrete-ordinates methodology. In Y. Azmy,E. Sartori, editors, Nuclear Computational Science: A Century in Review, pages 1–82.Springer, New York, 2010.[169] E. W. Larsen, R. Vasques. A generalized linear Boltzmann equation for non-classicalparticle transport. J. Quant. Spectrosc. Radiat. Transfer, 112:619–631, 2011.[170] K. D. Lathrop. Ray effects in discrete ordinates equations. Nucl.
Sci. Eng., 32(3):357–369, 1968.[171] K. D. Lathrop. Remedies for ray effects. Nucl. Sci. Eng., 45(3):225–268, 1971.[172] K. D. Lathrop, B. G. Carlson. Discrete ordinates angular quadrature of the neutrontransport equation. Technical Report LA-3186, Los Alamos Scientific Laboratory, LosAlamos, 1965.223[173] G.
Leduc, F. Monchoux, F. Thellier. Inverse radiative design in human thermalenvironment. Int. J. Heat Mass Transfer, 47:3291–3300, 2004.[174] C. E. Lee. The discrete approximation to transport theory. Technical ReportLA-2595, Los Alamos Scientific Laboratory, Los Alamos, 1962.[175] K. H.
Lee, R. Viskanta. Prediction of spectral radiative transfer in a condensedcylindrical medium using discrete ordinates method. J. Quant. Spectrosc. Radiat.Transfer, 58:329–345, 1997.[176] K. H. Lee, R. Viskanta. Transient conductive-radiative cooling of an optical qualityglass disk. Int. J. Heat Mass Transfer, 41:2083–2096, 1998.[177] E.