Диссертация (1143492), страница 39
Текст из файла (страница 39)
E. Lewis, W. F. Jr. Miller. Computational Methods of Neutron Transport. Wiley,New York, 1984.[178] B.-W. Li, Q. Yao, X.-Y. Cao, K.-F. Cen. A new discrete ordinates quadrature schemefor three-dimensional radiative heat transfer. J. Heat Transfer, 120:514–518, 1998.[179] B.-W. Li, H.-G. Chen, J.-H. Zhou, X.-Y. Cao, K.-F. Cen. The spherical surfacesymmetrical equal dividing angular quadrature scheme for discrete ordinates method.J.
Heat Transfer, 124:482–490, 2002.[180] B.-T. Liou, C.-Y. Wu. Radiative transfer in a multi-layer medium with Fresnelinterfaces. Heat and Mass Transfer, 32:103–107, 1996.[181] K-C. Liu, H-Y. Chen. Investigation for the dual phase lag behavior of bio-heat transfer.Int. J. Thermal Sci., 49:1138–1146, 2010.[182] K-C. Liu, Y-N. Wang, Y-S. Chen. Investigation on the bio-heat transfer with thedual-phase-lag effect.
Int. J. Thermal Sci., 58:29–35, 2012.[183] F. C. Lockwood, N. G. Shah. A new radiation solution method for incorporation ingeneral combustion prediction procedures. In Eighteenth Symposium (International)on Combustion, pages 1405–1414, Pittsburgh, 1981.[184] G. I.
Marchuk. Adjoint Equations and Analysis of Complex Systems.Dordrecht, 1995.Springer,[185] S. Maruyama, T. Aihara. Radiation heat transfer of arbitrary three-dimensionalabsorbing, emitting and scattering media and specular and diffuse surfaces. J. HeatTransfer, 119(1):129–136, 1997.224[186] K. A. Mathews, R. L. Miller, C. R. Brennan. Split-cell, linear characteristic transportmethod for unstructured tetrahedral meshes. Nucl. Sci. Eng., 136:178–201, 2000.[187] R. M. Mazo.
Brownian Motion: Fluctuations, Dynamics, and Applications. OxfordUniversity Press, Oxford, 2002.[188] R. G. McClarren. Theoretical aspects of the simplified equations. Transp. TheoryStat. Phys., 39:73–109, 2011.[189] R. G. McClarren, J. P. Holloway, T. A.
Brunner. Analytic 1 solutions for timedependent, thermal radiative transfer in several geometries. J. Quant. Spectrosc.Radiat. Transfer, 109:389–403, 2008.[190] V. Méndez, S. Fedotov, W. Horsthemke. Reaction-Transport Systems: MesoscopicFoundations, Fronts, and Spatial Instabilities. Springer, Heidelberg, 2010.[191] V. Mendéz, S. Fedotov, W. Horsthemke.
Reaction-transport systems: mesoscopicfoundations, fronts, and spatial instabilities. Springer, Berlin, 2010.[192] M. P. Menguc, R. Viskanta. Radiative transfer in three-dimensional rectangularenclosures containing inhomogeneous, anisotropically scattering media. J. Quant.Spectrosc. Radiat. Transfer, 33(6):533–549, 1985.[193] M.
I. Mishchenko. Maxwell’s equations, radiative transfer, and coherent backscattering:A general perspective. J. Quant. Spectrosc. Radiat. Transfer, 101:540–555, 2006.[194] M. I. Mishchenko, L. D. Travis, A. A. Lacis. Multiple Scattering of Light byParticles: Radiative Transfer and Coherent Backscattering. Cambridge UniversityPress, Cambridge, 2006.[195] S. C. Mishra, H.
K. Roy, N. Misra. Discrete ordinate method with a new and a simplequadrature scheme. J. Quant. Spectrosc. Radiat. Transfer, 101:249–262, 2006.[196] M. F. Modest. Radiative Heat Transfer. Elsevier, New York, 2013.[197] B. Moghadassian, F. Kowsary. Inverse boundary design problem of natural convectionradiation in a square enclosure. Int. J. Thermal Sci., 75:116–126, 2014.[198] J. E. Morel. Diffusion-limit asymptotics of the transport equation, the 1/3 equations,and two flux-limited diffusion theories. J. Quant. Spectrosc. Radiat. Transfer, 65:769–778, 2000.[199] J.
E. Morel, T. A. Wareing, R. B. Lowrie, D. K. Parsons. Analysis of ray-effectmitigation techniques. Nucl. Sci. Eng., 144(1):1–22, 2003.225[200] J. D. Murray. Mathematical Biology, volume 1. Springer, New York, 2002.[201] J. Y. Murthy, S. R. Mathur. Radiative heat transfer in axisymmetric geometries usingan unstructured finite-volume method. Numer. Heat Transfer B, 33(4):397–416, 1998.[202] J.
Nocedal, S. J. Wright. Numerical Optimization. Springer, New York, 2006.[203] G. L. Olson. Alternate closures for radiation transport using Legendre polynomials in1D and spherical harmonics in 2D. J. Comp. Phys., 231:2786–2793, 2012.[204] G. L. Olson, L. H. Auer, M. L. Hall. Diffusion, 1 , and other approximate forms ofradiation transport.
J. Quant. Spectrosc. Radiat. Transfer, 64:619–634, 2000.[205] H. G. Othmer, T. Hillen. The diffusion limit of transport equations II: Chemotaxisequations. SIAM J. Appl. Math., 62:1222–1250, 2002.[206] H. G. Othmer, C. Xue. The mathematical analysis of biological aggregation anddispersal: progress, problems and perspectives. In M. A. Lewis, P. K. Maini,S. V. Petrovskii, editors, Dispersal, Individual Movement and Spatial Ecology: AMathematical Perspective, pages 79–127.
Springer, Berlin, 2013.[207] H. G. Othmer, S. R. Dunbar, W. Alt. Models of dispersal in biological systems. J.Math. Biol., 26:263–298, 1988.[208] M. N. Özişik, H. R. B. Orlande. Inverse Heat Transfer: Fundamentals and Applications.Taylor & Francis, New York, 2000.[209] O. Pironneau. Optimal Shape Design for Elliptic Systems. Springer–Verlag, New York,1984.[210] M. J. Plank, M. Auger-Méthé, E. A. Codling.
Lévy or not? Analysing positional datafrom animal movement paths. In M. A. Lewis, P. K. Maini, S. V. Petrovskii, editors,Dispersal, Individual Movement and Spatial Ecology: A Mathematical Perspective,pages 33–52. Springer, Berlin, 2013.[211] G. C. Pomraning. The Equations of Radiation Hydrodynamics. Pergamon Press,Oxford, 1973.[212] J. M. Porrà, J.
Masoliver, G. H. Weiss. When the telegrapher’s equation furnishesa better approximation to the transport equation than the diffusion approximation.Phys. Rev. E, 55:7771–7774, 1997.[213] J. M. Porter, M. E. Larsen, J. W. Barnes, J. R. Howell. Metaheuristic optimization ofa discrete array of radiant heaters. J. Heat Transfer, 128:1031–1040, 2006.226[214] A. Pourshaghaghy, K. Pooladvand, F. Kowsary, K.
Karimi-Zand. An inverse radiationboundary design problem for an enclosure filled with an emitting, absorbing, andscattering media. Int. Commun. Heat Mass Transfer, 33:381–390, 2006.[215] L. Preziosi, D. D. Joseph. Stokes’ first problem for viscoelastic fluids. J. Non-NewtonianFluid Mech., 25:239–259, 1987.[216] G. D. Raithby, E. H. Chui. A finite-volume method for predicting a radiant heattransfer in enclosures with participating media. J. Heat Transfer, 112:415–423, 1990.[217] M. A. Ramankutty, A.
L. Crosbie. Modified discrete ordinates solution of radiativetransfer in two-dimensional rectangular enclosures. J. Quant. Spectrosc. Radiat.Transfer, 57:107–140, 1997.[218] M. A. Ramankutty, A. L. Crosbie. Modified discrete ordinates solution of radiativetransfer in three-dimensional rectangular enclosures. J. Quant.
Spectrosc. Radiat.Transfer, 60:103–134, 1998.[219] A. G. Ramm. Inverse Problems: Mathematical and Analytical Techniques withApplications to Engineering. Springer, Boston, 2005.[220] M. Reiner. Rheology. Springer, Berlin, 1958.[221] S. A. Rice. Diffusion-Limited Reactions. Elsevier, Amsterdam, 1985.[222] L. M. Rios, N. V.
Sahinidis. Derivative-free optimization: a review of algorithms andcomparison of software implementations. J. Glob. Optim., 56:1247–1293, 2013.[223] H. Risken. The Fokker–Plank Equation: Methods of Solution and Applications.Springer–Verlag, Berlin, 2nd edition, 1989.[224] J. L. Ross, M. Y. Ali, D. M. Warshaw.
Cargo transport: molecular motors navigate acomplex cytoskeleton. Curr. Opin. in Cell Biol., 20:41–47, 2008.[225] S. M. Ross. Introduction to Probability Models. Elsevier, Amsterdam, 2007.[226] S. A. Rukolaine, V. S. Yuferev. Discrete ordinates quadrature schemes based on theangular interpolation of radiation intensity. J. Quant. Spectrosc. Radiat. Transfer, 69:257–275, 2001.[227] S.
A. Rukolaine, M. G. Vasiliev, V. S. Yuferev, O. N. Budenkova, A. B. Fogelson, V. M.Mamedov, I. Yu. Evstratov, A. I. Zhmakin, V. N. Shlegel, Ya. V. Vasiliev. Numericalstudy of heat transfer in growing oxide crystal by Czochralski method, Proceedingsof the Fourth International Conference on Single Crystal Growth and Heat & MassTransfer, Vol. 3, Obninsk, Russia, 2001, pp. 669–679.227[228] S. A. Rukolaine, M.
G. Vasilyev, V. S. Yuferev, A. O. Galyukov. Numerical solution ofaxisymmetric radiative transfer problems in arbitrary domains using the characteristicmethod. J. Quant. Spectrosc. Radiat. Transfer, 73:205–217, 2002.[229] S. A. Rukolaine, M. G. Vasilyev, V. S. Yuferev, V. M. Mamedov.
A numerical schemefor the solution of axisymmetric radiative transfer problems in complex domains filledby participating media with opaque and transparent diffuse and specular boundaries.In P. Lybaert, V. Feldheim, D. Lemonnier, N. Selçuk, editors, Computational ThermalRadiation in Participating Media. Proceedings of the Eurotherm Seminar 73, Mons,Belgium, volume 11 of Eurotherm series, pages 1–10. Elsevier, Paris, 2003.[230] S. A. Rukolaine, M. G. Vasilyev, V.
S. Yuferev, V. M. Mamedov. A numerical schemefor the solution of axisymmetric radiative transfer problems in irregular domains filledby media with opaque and transparent diffuse and specular boundaries. J. Quant.Spectrosc. Radiat. Transfer, 84:371–382, 2004.[231] S. A. Rukolaine. Regularization of inverse boundary design radiative heat transferproblems. Вопросы математической физики и прикладной математики, с. 208–230. Физико-технический институт им.
А. Ф. Иоффе, Санкт-Петербург, 2005.[232] S. A. Rukolaine. Regular solution of axisymmetric inverse boundary design radiativeheat transfer problems. In D. Lemonnier, N. Selçuk, P. Lybaert, editors, ComputationalThermal Radiation in Participating Media II. Proceedings of the Eurotherm Seminar78, Poitiers, France, volume 12 of Eurotherm series, pages 267–276. Lavoisier, Paris,2006.[233] S.