Диссертация (1143486), страница 33
Текст из файла (страница 33)
®£« á® (5.37) ¢§ ¨¬®¤¥©á⢨¥ ⮬ëå í«¥ªâà®®¢ á ¨¬¯ã«ìᮬ í«¥ªâ஬ £¨â®£® ¯®«ï § ¯¨è¥¬ ¢ ¢¨¤¥: () ≡ ({r }, ) ==∑︁E(r , ) · r ,(5.38)=1£¤¥- ᮢ®ªã¯®áâì ª®®à¤¨ â ⮬ëå í«¥ªâà®®¢ ( = 1, ..., ), - ç¨á«® ⮬ëå í«¥ªâà®®¢. ãáâì ¢ (5.19) â ª®¥, çâ® () íä䥪⨢® ®â«¨ç ¥âáï ®â ã«ï ⮫쪮 ¢ â¥ç¥¨¥ ¢à¥¬¥¨ ∼ −1, ¬®£® ¬¥ì襣® å à ªâ¥àëå ¯¥à¨®¤®¢ ¥¢®§¬ã饮£® ⮬ , ®¯¨áë¢ ¥¬®£® £ ¬¨«ì⮨ ®¬ 0. «ï ¨««îáâà æ¨¨ ¯à¨¡«¨¦¥¨ï ¢¥§ ¯ëå ¢®§¬ã饨© [116] ¢í⮬ á«ãç ¥, ¯à®é¥ à áᬮâà¥âì à¥è¥¨¥ ãà ¢¥¨ï ।¨£¥à {r }˙ = (0 + ()) ,(5.39)193£¤¥ () -¢¥§ ¯®¥ ¢®§¬ã饨¥.
¨â®£¥, ¯à¨ à¥è¥¨¨ ãà ¢¥¨ï (5.39)¬®¦® ¯à¥¥¡à¥çì í¢®«î樥© ¢®«®¢®© äãªæ¨¨ ¯®¤ ¤¥©á⢨¥¬ ᮡá⢥®£®£ ¬¨«ì⮨ 0 ¨ à¥è âì ãà ¢¥¨¥ ˙ = () . âªã¤ á«¥¤ã¥â, çâ®∫︁ () = exp{− ()}(0 ).(5.40)0¬¯«¨â㤠¯¥à¥å®¤ ⮬ ¨§ ç «ì®£® á®áâ®ï¨ï 0 ¢ ª®¥ç®¥ á®áâ®ï¨¥ ¢ १ã«ìâ ⥠¤¥©áâ¢¨ï ¢¥§ ¯®£® ¢®§¬ã饨ï () ¡ã¤¥â ¨¬¥âì ¢¨¤ [116]:0∫︁+∞= ⟨ | (− ()) | 0 ⟩,(5.41)−∞£¤¥ 0 ¨ ¯à¨ ¤«¥¦ â ¯®«®© ®à⮮ନ஢ ®© á¨á⥬¥ ᮡá⢥ëåäãªæ¨© ¥¢®§¬ã饮£® £ ¬¨«ì⮨ 0. ®§¬ã饨¥ (5.38) § ¯¨á ® ¬¨ ¤«ï ⮬ , ï¤à® ª®â®à®£® à ᯮ«®¦¥® ¢ ç «¥ á¨áâ¥¬ë ª®®à¤¨ â. ᫨ ᬥáâ¨âì ¯®«®¦¥¨¥ ⮬ à ááâ®ï¨¥ R ®â ç « á¨á⥬몮®à¤¨ â, â® ¢§ ¨¬®¤¥©á⢨¥ (5.38) ¯à¨¬¥â ¢¨¤ () ==∑︁E(r + R, ) · (r + R) ==1==∑︁E(r + R, )r + E(r + R, )R ,(5.42)=1£¤¥ ¢á¥ r ¯®¯à¥¦¥¬ã ®âáç¨âë¢ îâáï ®â ï¤à ⮬ .
¥ âà㤮 㢨¤¥âì,+∞∫︀¨á¯®«ì§ãï ï¢ë© ¢¨¤ (5.19) ¤«ï E(r + R, ), çâ® ¨â¥£à « ®â ¢â®à®£®−∞á« £ ¥¬®£® (¢ ¯à ¢®© ç á⨠ä®à¬ã«ë (5.42) ) ¥ § ¢¨á¨â ®â ª®®à¤¨ â ⮬ëå í«¥ªâà®®¢, ¯®í⮬㠢â®à®¥ á« £ ¥¬®¥, ᮣ« á® (5.41), ¥ ¢®á¨â ¢ª« ¤ ¢ ¬¯«¨âã¤ã ¯¥à¥å®¤ 0. ª¨¬ ®¡à §®¬, ¤«ï ⮬ , () ¬®¦® ¯à¥¤áâ ¢¨âì¢ ¢¨¤¥ () ≡ (r , ) ==∑︁E(r + R, ) · r .(5.43)=1 áᬮâਬ ⥯¥àì á¨á⥬㠨§ ¥¢§ ¨¬®¤¥©áâ¢ãîé¨å ®¤¨ ª®¢ëå á«®¦ëå ⮬®¢, ª ¦¤ë© ¨§ ª®â®àëå ᮤ¥à¦¨â í«¥ªâà®®¢. 롥६ ¤«ï㤮¡áâ¢ ç «® á¨áâ¥¬ë ª®®à¤¨ â ᮢ¯ ¤ î騬 á ¯®«®¦¥¨¥¬ ⮬ 194á ®¬¥à®¬ 1.
®«®¦¥¨¥ ¯à®¨§¢®«ì®£® ⮬ á ®¬¥à®¬ , £¤¥ =1, 2, · · · , ®â®á¨â¥«ì® í⮩ á¨áâ¥¬ë ª®®à¤¨ ⠡㤥¬ ®¯¨áë¢ âì ¢¥ªâ®à®¬R . ¡®§ 稬 ª ª r, ª®®à¤¨ âë í«¥ªâà® , ¯à¨ ¤«¥¦ 饣® ⮬ã ᮬ¥à®¬ , ª®®à¤¨ âë r, ®âáç¨âë¢ îâáï ®â®á¨â¥«ì® ï¤à ⮬ ᮬ¥à®¬ . ®£¤ R, = R + r, - ª®®à¤¨ âë í«¥ªâ஠⮬ ®â®á¨â¥«ì® ç « á¨áâ¥¬ë ª®®à¤¨ â. ®â¥æ¨ « ¢§ ¨¬®¤¥©á⢨ï í«¥ªâà®®¢ á¨á⥬ë ⮬®¢ á ã«ìâà ª®à®âª¨¬ ¨¬¯ã«ìᮬ í«¥ªâ஬ £¨â®£® ¯®«ï à ¢¥: () = ∑︁∑︁E(R + r, , ) · r, .(5.44)=1 =1®â¥æ¨ « (5.44) ¬®¦® áç¨â âì ¤¥©áâ¢ãî騬 ¢¥§ ¯® ¯à¨ ãá«®¢¨¨¢¥§ ¯®á⨠¤¥©áâ¢¨ï ª ª®©-«¨¡® ⮬ 楯®çª¨ ∼ 1/ ≪ ¨ ãá«®¢¨ïªà ⪮á⨠¢§ ¨¬®¤¥©á⢨ï () á® ¢á¥© á¨á⥬®© ¨§ ⮬®¢ (á å à ªâ¥àë¬à §¬¥à®¬ ¢¤®«ì à á¯à®áâà ¥¨ï ¨¬¯ã«ìá ) ¯® áà ¢¥¨î á å à ªâ¥àë¬ â®¬ë¬ ¢à¥¬¥¥¬ ¨«¨: ∼ 1/ ≪ ∼ 1,/ ≪ ∼ 1.(5.45)® ¢§ ¨¬®¤¥©á⢨ï á ¨¬¯ã«ìᮬ í«¥ªâ஬ £¨â®£® ¯®«ï ª ¦¤ë© ⮬áç¨â ¥¬ 室ï騬áï ¢ ®á®¢®¬ á®áâ®ï¨¨ 0({r,}), £¤¥ {r,} - ᮢ®ªã¯®áâì ª®®à¤¨ â í«¥ªâà®®¢, ¯à¨ ¤«¥¦ 饣® ⮬ã á ®¬¥à®¬ .
®£¤ ¢®«®¢ ï äãªæ¨ï ®á®¢®£® á®áâ®ï¨ï ¢á¥å í«¥ªâà®®¢ ¢ë襮¯¨á ®©á¨áâ¥¬ë ¨§ ¥¢§ ¨¬®¤¥©áâ¢ãîé¨å ®¤¨ ª®¢ëå ⮬®¢ à ¢ Φ0 = 0 ({r1, })0 ({r2, }) · · · 0 ({r, }).(5.46) ¯à¨¡«¨¦¥¨¨ ¢¥§ ¯ëå ¢®§¬ã饨© í¢®«îæ¨ï ç «ì®£® (5.46) á®áâ®ï¨ï Φ0 ¨¬¥¥â ¢¨¤ ¯®¤®¡ë© (5.40):∫︁ Φ0 () = (− (′ )′ )Φ0 ,(5.47)−∞¯à¨ç¥¬ Φ0() → Φ0 ¯à¨ → −∞. ®«®¢ãî äãªæ¨î ¯à®¨§¢®«ì®£® ¢®§¡ã¦¤¥®£® á®áâ®ï¨ï ®â¤¥«ì®£® ⮬ (¨¬¥î饣® ®¬¥à ¢ á¨á⥬¥) ¡ã¤¥¬®¡®§ ç âì ({r,}).
®£¤ ¢®«®¢ ï äãªæ¨ï ¯à®¨§¢®«ìëå ¢®§¡ã¦¤¥ëå195á®áâ®ï¨© ¢á¥å í«¥ªâà®®¢ ¢ë襮¯¨á ®© á¨áâ¥¬ë ¨§ ¥¢§ ¨¬®¤¥©áâ¢ãîé¨å ®¤¨ ª®¢ëå ⮬®¢ à ¢ Φ = 1 ({r1, })2 ({r2, }) · · · ({r, }).(5.48)£¤¥ = (1, 2, · · · , ) - ᮢ®ªã¯®áâì ª¢ ⮢ëå ç¨á¥« ¤«ï í«¥ªâà®ëåá®áâ®ï¨© ¢á¥å ⮬®¢ á¨á⥬ë. ¢¥¤¥¬ ¯®«ãî ¨ ®à⮮ନ஢ ãî á¨á⥬ã äãªæ¨©∫︁+∞ (′ )′ )Φ ,Φ () = ((5.49)¯à¨ç¥¬ Φ() → Φ ¯à¨ → +∞.
祢¨¤®, çâ® ¬¯«¨âã¤ã ¯¥à¥å®¤ ¨§á®áâ®ï¨ï Φ0 ¢ á®áâ®ï¨¥ Φ ¢ ¯à¨¡«¨¦¥¨¨ ¢ १ã«ìâ ⥠¤¥©áâ¢¨ï ¢¥§ ¯®£®¢®§¬ã饨ï (5.44) ¬®¦® § ¯¨á âì (áà. (5.41)) ¢ ¢¨¤¥0∫︁+∞ (′ )′ ) | Φ0 ⟩ = ⟨Φ () | Φ0 ()⟩.= ⟨Φ | ((5.50)−∞ë ¨é¥¬ ¯¥à¥¨§«ã票¥ ã«ìâà ª®à®âª®£® ¨¬¯ã«ìá ¢ â¥ç¥¨¥ ¥£® ¢à¥¬¥¨¢§ ¨¬®¤¥©á⢨ï á á¨á⥬®© ¨§ ⮬®¢. ®í⮬ã, ª ª ¢ [168, 170],1 =−)︂ ∑︁(︂ ∑︁∑︁2 2=1 =1 k,−kR,uk +p^ , ,k (5.51)£¤¥ +k - ®¯¥à â®àë ஦¤¥¨ï ¨ ä®â® á ç áâ®â®© , ¨¬¯ã«ìᮬ k ¨ ¯®«ïਧ 樥© , ( = 1, 2), uk - ¥¤¨¨çë¥ ¢¥ªâ®àë ¯®«ïਧ 樨, R, = R+r,- ª®®à¤¨ âë í«¥ªâà®®¢ ⮬ ®â®á¨â¥«ì® ç « á¨áâ¥¬ë ª®®à¤¨ â,p^ , = −/r, - ®¯¥à â®àë ¨¬¯ã«ìá ⮬ëå í«¥ªâà®®¢. ®£¤ ¬¯«¨â㤠¨á¯ã᪠¨ï ä®â® á ®¤®¢à¥¬¥ë¬ ¯¥à¥å®¤®¬ ⮬®¢ á¨áâ¥¬ë ¨§ á®áâ®ï¨ïΦ0 ¢ á®áâ®ï¨¥ Φ ¨¬¥¥â ¢¨¤(︂0 () = 2)︂ 21uk∫︁+∞∑︁ ⟨Φ () |−kR, p^ , | Φ0 ()⟩.−∞(5.52),âáî¤ , ¯®á«¥ ¨â¥£à¨à®¢ ¨ï ¯® ç áâï¬ ¯® ¢à¥¬¥¨ ¨ ®¯ã᪠¨ï ç«¥®¢,¨á祧 îé¨å ¯à¨ ¢ëª«î票¨ (¯à¨ → ±∞) ¢§ ¨¬®¤¥©á⢨ï á í«¥ª-196â஬ £¨âë¬ ¯®«¥¬, ¯®«ãç ¥¬(︂ )︂ 12∫︁+∞ 2×0 () = −uk−∞×⟨Φ |∑︁−kR,,(︀ () −r,∫︁+∞′′ )︀ ( ) | Φ0 ⟩.(5.53)−∞®¤ç¥àª¥¬, à¥çì ¨¤¥â ®¡ ¨§«ã票¨ ®¤®£® ä®â® ¢á¥¬¨ í«¥ªâà® ¬¨ ⮬®¢ á¨áâ¥¬ë § ¢à¥¬ï ¤¥©áâ¢¨ï ¢®§¬ã饨ï ().
«¥¥ ¬ ¥®¡å®¤¨¬® ©â¨ ᯥªâà ¨§«ã票ï ä®â® ¢ ⥫¥áë© ã£®« Ωk, ®¯¨á ë© ¢¤®«ì ¯à ¢«¥¨ï ¨¬¯ã«ìá ä®â® k. ।áâ ¢¨¢ í«¥¬¥â ¨â¥£à¨à®¢ ¨ï ¯®¨¬¯ã«ìáã ä®â® ¢ ¢¨¤¥(2)−3 3 k = (2)−3 Ωk 2 ¨ ¢ë¯®«¨¢ á㬬¨à®¢ ¨¥ | 0() |2 ¯® ¯®«ïਧ æ¨ï¬ ä®â® ¨ ¯® ¢á¥¬¢®§¬®¦ë¬ ª®¥çë¬ á®áâ®ï¨ï¬ í«¥ªâà®®¢ ⮬®¢ á¨á⥬ë, ¯®«ã稬ᮮ⢥âáâ¢ãî騩 ᯥªâà ¨á¯ã᪠¨ï ä®â® ¢ ¥¤¨¨æã ⥫¥á®£® 㣫 Ωk:2 11=⟨Φ0Ωk (2)2 3 ⃒⃒2⃒∑︁⃒̃︀()⃒⃒−kR,|⃒[n]⃒ | Φ0 ⟩,⃒ ,r, ⃒(5.54)£¤¥ n = k/ - ¥¤¨¨çë© ¢¥ªâ®à ¯à ¢«¥¨ï ¢ë«¥â ä®â® , ̃︀ () - ãà쥮¡à § äãªæ¨¨ (), ¯à¥¤áâ ¢«¥®© ä®à¬ã«®© (5.44), ¯®í⮬ã)︂(︂∫︁+∞∑︁̃︀ () = () = 0 ()(E0 r, ) k0 R, ,0,(5.55)−∞£¤¥ R, = R+r, - ª®®à¤¨ âë í«¥ªâà® , ¯à¨ ¤«¥¦ 饣® ⮬ã á ®¬¥à®¬, ®â®á¨â¥«ì® ç « á¨áâ¥¬ë ª®®à¤¨ â,{︃0 () =[︃21( − 0 ) −242]︃]︂}︃( + 0 )+ −,42[︂2(5.56)197 ¢¥ªâ®à®¥ ¯à®¨§¢¥¤¥¨¥ à ¢®{︂}︂ (︂)︂ ̃︀ ()[n] = 0 () k0 R,[E0 n] + (E0 r, )[k0 n] .r,00(5.57)¥¯¥àì ¥âà㤮 ¯à¥¤áâ ¢¨âì ¯®«ë© ᯥªâà ¨§«ã票ï ä®â® ¢ ¥¤¨¨æã⥫¥á®£® 㣫 Ωk ¢ â¥ç¥¨¥ ¢à¥¬¥¨ ¤¥©áâ¢¨ï ¢¥§ ¯®£® ¢®§¬ã饨ï ()¢ ¢¨¤¥:∑︁ ∑︁2 | 0 () |2−p(R, −R, ) ×=⟨Φ0 |23Ωk (2) , ,{︃× [E0 n]2 + ([E0 n][k0 n])E0 (r, − r, ) +0}︃2+(E0 r, )(E0 r, ) 2 [k0 n]2 | Φ0 ⟩,0(5.58)£¤¥ p = k − (/0)k0 = (/)(n − n0).
«ì¥©è¨¥ ã¯à®é¥¨ï í⮩ ä®à¬ã«ë á¢ï§ ë á ⥬, ∑︀çâ® ¢å®¤ï騥 ¢ ¥¥ á।¨¥ ¯® ®á®¢®¬ã á®áâ®ï¨îΦ0 ¨¬¥îâ ¢¨¤ ⟨Φ0 | (r, , r, ) | Φ0 ⟩ ¨, ®ç¥¢¨¤®, ¥ § ¢¨áï⠮⠮¬¥à®¢, ⮬®¢ ¨ . ª ¢ à ¡®â¥ [170] ¢ë¤¥«¨¬ ¢ ä®à¬ã«¥ (5.58) á㬬¨à®¢ ¨¥ á = íâã ç áâì ®¡®§ 稬 2 1 /(Ωk ), á㬬㠦¥ á ̸= ®¡®§ 稬 ª ª2 2 /(Ωk ), ᮮ⢥âá⢥®, ¯à¥¤áâ ¢¨¬ ᯥªâà (5.58) ¢ ¢¨¤¥ (5.6). ¯¥ªâà 21/(Ωk) ᮮ⢥âáâ¢ã¥â ¥ª®£¥à¥âë¬ (¯à®¯®à樮 «ìë¬ ) ¯à®æ¥áá ¬ ¯¥à¥à áá¥ï¨ï. â¥àä¥à¥æ¨®ë© ¦¥ ᯥªâà 22/(Ωk) ®â¢¥âá⢥¥ § ¯®ï¢«¥¨¥ å à ªâ¥àëå "¤¨äà ªæ¨®ëå"¬ ªá¨¬ã¬®¢. ¥ âà㤮㡥¤¨âìáï, çâ® 21/(Ωk) ¢ëà ¦ ¥âáï ç¥à¥§ 㬮¦¥ë¥ ç¨á«® ⮬®¢¢ á¨á⥬¥ ®¤® â®¬ë¥ á।¨¥ ¨ ¬®¦¥â ¡ëâì ¯à¥¤áâ ¢«¥ â ª22{︃}︃| 0 () | 1= (, n, n0 ) + ( − 1) (, n, n0 ) ,Ωk (2)2 3 (5.59)£¤¥(, n, n0 ) =1⟨0 |{︃∑︁2[E0 n]2 + (E0 r, )(E0 r, )[k0 n]220}︃| 0 ⟩, (5.60)§¤¥áì 0 ≡ 0({r,}) - ¢®«®¢ ï äãªæ¨ï ®á®¢®£®á®áâ®ï¨ï ª ª®£®-«¨¡®∑︀¯à®¨§¢®«ì®£® ⮬ ¢ á¨á⥬¥, á㬬¨à®¢ ¨¥¯à®¢®¤¨âáï ⮫쪮 ¯®198í«¥ªâà® ¬, ¯à¨ ¤«¥¦ 騬 í⮬ã ⮬ã, ¯®í⮬ã ç¨á«® á« £ ¥¬ëå, ¯à¨á㬬¨à®¢ ¨¨ ¢ (5.60), ¯à®¯®à樮 «ì® - ç¨á«ã í«¥ªâà®®¢ ¢ ⮬¥.
ä®à¬ã«¥ (5.59) ç¨á«® í«¥ªâà®®¢ ¢ ⮬¥ ¢ë¤¥«¥® ¢ ¢¨¤¥ ¬®¦¨â¥««ï¯¥à¥¤ (, n, n0), ¨¬¥® ¯®í⮬㠢 ¯à ¢®© ç á⨠(5.60) ¢¢¥¤¥ ¬®¦¨â¥«ì1/ . ।¥¥ ¦¥ (, n, n0 ) ¯® «®£¨ç®© ¯à¨ç¨¥ ᮤ¥à¦¨â ¬®¦¨â¥«ì1/ ( − 1) ¨ à ¢®:1 (, n, n0 ) =⟨0 | ( − 1){︃∑︁−p(r, −r, ) [E0 n]2 +,(̸=)2+([E0 n][k0 n])E0 (r, − r, ) + (E0 r, )(E0 r, ) 2 [k0 n]200}︃| 0 ⟩,(5.61)£¤¥ á㬬¨à®¢ ¨¥ ¨¤¥â ¯® ¢á¥¢®§¬®¦ë¬ ¯ à ¬ í«¥ªâà®®¢, ¢å®¤ï騬 ¢á®áâ ¢ ®¤®£® ª ª®£®-«¨¡® ¯à®¨§¢®«ì®£® ⮬ , ¯®í⮬ã ç¨á«® á« £ ¥¬ëå¯à®¯®à樮 «ì® ( − 1) - ç¨á«ã ¯ à í«¥ªâà®®¢ ¢ ⮬¥. «®£¨ç®,ᯥªâà 22/(Ωk) ¢ëà ¦ ¥âáï ç¥à¥§ ¤¢ãå â®¬ë¥ á।¨¥ (, n, n0) ¨à ¢¥:| 0 () |2 22 2= (, n, n0 ) (p) ,Ωk (2)2 3 (5.62)£¤¥(, n, n0 ) =∑︁ ∑︁1×⟨({r})({r})|0,0,2{︃×−p(r, −r, ) [E0 n]2 + ([E0 n][k0 n])E0 (r, − r, ) +0}︃2+(E0 r, )(E0 r, ) 2 [k0 n]20| 0 ({r, })0 ({r, })⟩,(5.63)£¤¥ ̸= , â.¥.
á㬬¨à®¢ ¨¥ ¯à®¢®¤¨âáï ¯® ¢á¥¢®§¬®¦ë¬ ¯ à ¬ í«¥ªâà®®¢¯à¨ ¤«¥¦ é¨å ª ª¨¬-«¨¡® ¤¢ã¬ ¯à®¨§¢®«ìë¬ â®¬ ¬. ãáâì, ¯à¨¬¥à,¬ë ¢ë¡à «¨ ¯ àã ⮬®¢ á ®¬¥à ¬¨ ¨ , â® ¥á«¨ ®¤¨ ¨§ í«¥ªâà®®¢¯à¨ ¤«¥¦¨â ⮬ã , â® ¢â®à®© í«¥ªâà® ®¡ï§ â¥«ì® ¯à¨ ¤«¥¦¨â ⮬ã. «ï ¤¢ãå ®¤¨ ª®¢ëå ⮬®¢, à ᯮ«®¦¥ëå ¢ à §ëå ( ̸= ) ¬¥áâ å ¬¨è¥¨, ç¨á«® â ª¨å ¯ à í«¥ªâà®®¢ 2. ®í⮬ã á।¥¥ (, n, n0)ᮤ¥à¦¨â ¬®¦¨â¥«ì 1/2.1995.2.2Анализ полученного выражения для спектров переизлучения áᬮâਬ ¢ ª ç¥á⢥ ¯à¨¬¥à á¨á⥬㠨§ ¥¢§ ¨¬®¤¥©áâ¢ãîé¨å ⮬®¢ £¥«¨ï.
ᮢ®¥ á®áâ®ï¨¥ ®¤®£® ⮬ £¥«¨ï ¡ã¤¥¬ ®¯¨áë¢ â좮«®¢®© äãªæ¨¥© 0(r1, r2), ⮣¤ ¢ ä®à¬ã«¥ (5.58) Φ0 - ¢®«®¢ ï äãªæ¨ïí«¥ªâà®®¢ á¨áâ¥¬ë ¨§ ⮬®¢ £¥«¨ï à ¢ Φ0 = 0 (r1,1 , r1,2 )0 (r2,1 , r2,2 ) · · · 0 (r,1 , r,2 ). ᫨ ª ¦¤ãî ¤¢ãåí«¥ªâà®ãî ¢®«®¢ãî äãªæ¨î ®á®¢®£® á®áâ®ï¨ï ⮬ £¥«¨ï 0 ®¯¨áë¢ âì ª ª ¯à®¨§¢¥¤¥¨¥ ¤¢ãå ¢®¤®à®¤®¯®¤®¡ëå ¢®«®¢ëå äãªæ¨© 1-á®áâ®ï¨© á íää¥ªâ¨¢ë¬ § à冷¬ = 2 − 5/16, â®2 2(, n, n0 ) = [E0 n] + 2 2 0 [n0 n]2 ,2{︂ (, n, n0 ) = (, n, n0 ) =(5.64) 64(E0 p)[n0 n]16[E0 n]−(4 + p2 / 2 )2 (4 + p2 / 2 )3}︂2.(5.65)¥à¥¬áï ª á«ãç î ¯à®¨§¢®«ìëå ⮬®¢, á㬬¨àãï (5.59) ¨ (5.62), ¯®«ãç ¥¬¯®«ë© ᯥªâà ¢ ¢¨¤¥:22{︃| 0 () |= (, n, n0 ) + ( − 1) (, n, n0 ) +Ωk (2)2 3 }︃+2 (, n, n0 ) (p) .(5.66)£¤¥ (p) =∑︁,(̸=)p(R −R )=∑︁,p(R −R )− =|∑︁pR |2 − ,(5.67)⬥⨬, çâ® ç¨á«® ⮬®¢ ¢ á¨á⥬¥ ¯à®¨§¢®«ì®, ¢ ç áâ®áâ¨, ¯à¨ = 1ä®à¬ã« (5.66) ®¯¨áë¢ ¥â ᯥªâà ¯¥à¥¨§«ãç¥¨ï ®¤®£® ⮬ , ¯à¨ = 2 ®¯¨áë¢ ¥â ᯥªâà ¯¥à¥¨§«ã票ï á¨áâ¥¬ë ¨§ ¤¢ãå ⮬®¢ ¨ â.¤.
(áà. [168]). ¯®¬¨¬, çâ® ¯à¨ ¯à®¨§¢®«ìëå ¥®¡å®¤¨¬® á«¥¤¨âì § ¢ë¯®«¥¨¥¬ãá«®¢¨© ¢¥§ ¯®á⨠(5.45). ä®à¬ã«¥ (5.66) ¯¥à¢ë¥ ¤¢ á« £ ¥¬ëå ¢ ¯à ¢®©ç á⨠¯à¥¤áâ ¢«ïîâ ᮡ®© 㬮¦¥ë© ç¨á«® ⮬®¢ ¢ á¨á⥬¥ ᯥªâà ¨§«ãç¥¨ï ®â¤¥«ì®£® ⮬ ¨ ᮮ⢥âáâ¢ãîâ ¥ª®£¥à¥â®¬ã (¯à®¯®à-200樮 «ì®¬ã ) ¯à®æ¥ááã ¯¥à¥¨§«ã票ï.
¦®, çâ® ¢ ä®à¬ã«¥ (5.66) «¨è쬮¦¨â¥«ì (p) § ¢¨á¨â ®â ¢§ ¨¬®£® ¯à®áâà á⢥®£® à ᯮ«®¦¥¨ï ⮬®¢ á¨á⥬ë, äãªæ¨¨ , ¨ § ¢¨áïâ «¨èì ®â å à ªâ¥à¨á⨪¨§®«¨à®¢ ëå ⮬®¢ ¥§ ¢¨á¨¬® ®â ¨å ¬¥áâ à ᯮ«®¦¥¨ï. áᬮâਬ¯®¢¥¤¥¨¥ ᯥªâà (5.66) ¢ ®¡« á⨠¬ «ëå ç áâ®â. ᯮ«ì§ãï ä®à¬ã«ë (5.60),(5.61), (5.63) ¨ (5.67) ¥âà㤮 ã¡¥¤¨âìáï, çâ® ®¨ ïîâáï ç¥â묨 äãªæ¨ï¬¨ ç áâ®âë , ¯à¨ç¥¬ ç áâ®â ¢å®¤¨â ¢ í⨠äãªæ¨¨ «¨èì ¢ ¢¨¤¥ ®â®è¥¨ï/ ¨ à §«®¦¥¨ï ¢ëè¥ãª § ëå äãªæ¨© ¯® ¬ «ë¬ / ᮤ¥à¦¨â «¨èìç¥âë¥ á⥯¥¨ /.
஬¥ ⮣®, ¬®¦® áç¨â âì ¤«ï ®æ¥®ª å à ªâ¥àë¥ â®¬ë¥ à §¬¥àë ∼ 1. ª¨¬ ®¡à §®¬, ¢ ®¡« á⨠¬ «ëå ç áâ®â, ª®£¤ 2 /2 ≪ 1 äãªæ¨ï (, n, n0 ) = (, n, n0 ) = (, n, n0 ) = [E0 n]2 . à¨â ª¨å ä®à¬ã« (5.66) § ç¨â¥«ì® ã¯à®é ¥âáï ¨ ¯à¨¨¬ ¥â ¢¨¤2 | 0 () |2 2= [E0 n]2 ( (p) + ) .23Ωk (2) (5.68)¯à¨ç¥¬, ¯à¨ 2/2 → 0 ¢¥ªâ®à p = k − (/0)k0 = (/)(n − n0) →0 ¨ ä ªâ®à (p) → 2 − , ç⮠ᮮ⢥âáâ¢ã¥â «¨ç¨î ª®£¥à¥â®£®(¯à®¯®à樮 «ì®£® 22) ¨§«ã票ï ä®â® ¢á¥¬¨ í«¥ªâà® ¬¨ ¬¨è¥¨¨«¨ íä䥪âã ¨â¥àä¥à¥æ¨¨. ª« ¤ ¨â¥àä¥à¥æ¨®ëå íä䥪⮢ 㤮¡®å à ªâ¥à¨§®¢ âì ®â®è¥¨¥¬, ¨¬¥î騬 ¢ ®¡« á⨠¬ «ëå ç áâ®â ¢¨¤2 Ωk 2 1Ωk =1( (p) + ) .(5.69)¥à¥¬áï ª ä®à¬ã«¥ (5.66) ¤«ï ¯®«®£® ᯥªâà . ®á«¥¤¥¥ á« £ ¥¬®¥ ¢¯à ¢®© ç á⨠(5.66) ¢ª«îç ¥â ¢ á¥¡ï ª®£¥à¥âãî (¯à®¯®à樮 «ìãî 2)ç áâì ᯥªâà ¯¥à¥¨§«ã票ï.