Совершенствование методов обоснования выборки в аудиторской проверке (1142757), страница 41
Текст из файла (страница 41)
22(2). P.497-525.92.Hansen, M.H. On the Theory of Sampling from Finite Populations / M.H. Hansen,W.N. Hurwitz // Annals of Mathematical Statistics. –1943. – Vol.14, P.332-362.93.Hatherly, D. The future of auditing: the debate in the UK / D. Hatherly // The EuropeanAccounting Review. – 1999.
– Vol.2(1). – P.51–65.94.Heimann, S.R. Audit Sample Sizes for Aggregated Statement Accounts / S.R. Heimann,G.R. Chesley //Journal of Accounting Research. – 1977. Vol.15(2). –P.193-206.95.Heiner, K.W. Computerized interactive stratification in statistical audits / K.W. Heiner //Mathematics with Vision: Proceedings of the First International Mathematica Symposium Year.– 1995. – P.199-206.96.Herndndez-Bastida, А. A note on the Quasi-Bayesian audit risk model for dollar unit sampling/ A.
Herndndez-Bastida, F.J. Vazquez-Polo // The European Accounting Review. – 1997. – Vol.6(3).– P.501-507.97.Hoeffding, W. Probability Inequalities for Sums of Bounded Random Variables /W. Hoeffding // Journal of American Statistical Association. – 1963. – Vol. 58(301). – P.13-58.98.Hoft, H.F.W. Computing with Mathematica / H.F.W. Hoft, M.H. Hoft.
– Academic Press;2th Edition. – 2002. – 313 p.211 99.Hollister, C. W. Henry I / C.W. Hollister, A.C. Frost. – Yale University Press. – 2003.– 558 p.100.Horvitz, D. G. A generalization of sampling without replacement from a finite universe /D.G. Horvitz, D.J. Thompson // Journal of the American Statistical Association.
– 1952. – Vol.47.– P.663-685.101.Howard, R. C. A Combined Bound for Errors in Auditing Based on Hoeffding’s Inequalityand Bootstrap / R.C. Howard // Journal of Business and conomic Statistics, American StatisticalAssociation. – 1994. – Vol.12(4). – P.437-448.102.Johnson, J.R. Characteristics of Errors in Accounts Receivables and Inventory Audits /J.R. Johnson, R.A. Leitch, J. Neter // Accounting Review. – 1981. – Vol.
56(2). – P.270-294.103.Johnstone, K.M. Auditing: A Risk Based-Approach to Conducting a Quality Audit /K.M. Johnstone, A.A. Gramling. Cengage Learning; 10th Edition. – 2015. – 960 p.104.Kachelmeier, S.J. An Investigation of the influence of a Nonstatistical Decision aid on auditorsample size decisions / S.J. Kachelmeier, J.W.F. Messier // The accounting review. – 1990.– Vol.65(1). – P.209-226.105.Kampas, F.J. Using Reduce to solve the Kuhn-Tucker equations / F.J. Kampas //The Mathematica Journal. – 2007. – Vol.9 (4).106.Kemp, S. Audit scepticism: an international perspective / S. Kemp // FCA. –2012.
– Vol.83.– P.52-52.107.Kinney Jr, W.R. Regression Analysis as a means of determining audit sample size:A comment / W.R. Kinney Jr, A.D. Andrew Jr// Accounting Review. – 1976. – Vol.76(2).– P.396-401.108.Kleijnen, J.P.C. Regression sampling in statistical auditing / J.P.C. Kleijnen, J.
Kriens,H. Timmermans, H. Van den Wildenberg // FEW 306, University of Tilburg. – 1988. 56 p.109.Krishnamurty, M. Bootstrap confidence intervals for estimating audit value from skewedpopulations and small samples / M. Krishnamurty, A.G. A.S. Rathindra // Simulation. – 1991.– Vol.56(2). – P.119-127.110.Kvanli, A.H. The Bootstrap: What the Government Auditor Should Know / A.H. Kvanli,R.
Schauer // Journal of Government Financial management. – 2002. – Vol.51(3). – P.24-33.111.Leitch, R.A. Modified Multinomial Bounds for Larger Number of errors in Audits /R.A. Leitch, J. Neter, R. Plante, P. Sinha // The Accounting Review. – 1982. – Vol.57(2).– P.384-400.112.Leslie, D.A. Dollar-Unit Sampling: A Practical Guide for Auditors / D.A. Leslie,A.D. Teitlebaum, R.J. Anderson.
– London: Pitman. – 1979. 409 p.113.Maingot, M. Sampling Practices of Internal Auditors at Corporations on the Standard & Poor'sToronto Stock Exchange Composite Index / M. Maingot, T.K. Quon // Accounting Perspectives.– 2009. – Vol.8(3). – P.215-234.212 114.Masala, G. Mathematical tools for Economics and Finance with Mathematica softwareGiovanni Masala / G. Masala. – Universitas Studiorum. – 2015.
– 346 p.115.Matsumura, E.M. Comparative Performance of Two Multinomial-Based Methods forObtaining Lower Bounds on the Total Overstatement error in Accounting Populations /E.M. Matsumura, R. Plante, K, Tsui, P. Kannan P. // Journal of Business and Economic Statistics,American Statistical Association. – 1991.
– Vol. 9(4). P.423-429.116.McCray, J.H. A Quasi-Bayesian audit Risk Model for Dollar Unit Sampling / J.H. McCray //The Accounting Review. – 1984. – Vol.59(1). P.35-51.117.Mecatti, F. Contributions to Sampling Statistics / F. Mecatti, P.L. Conti, M.G. Ranalli.– Springer. – 2014. – 232 p.118.Menzefricke, U. simulation study of the performance of parametric dollar unit samplingstatistical procedures / U. Menzefricke, W. Smieliauskas // Journal of Accounting Research. – 1984.– Vol.22(2). – P.588-603.119.Mickey, M.R.
Some finite population unbiased ratio and regression estimators / M.R. Mickey// JASA. – 1959. – Vol.54(287). – P.596-612.120.Moeller, R.M. Brink's Modern Internal Auditing: A Common Body of Knowledge /R.M. Moeller. – Wiley. – 8th Edition. – 2016. – 832 p.121.Moritz, M.
Wesentlichkeitsallokation im Rahmen der Konzernabschlussprüfung Einetheoretische und empirische Analyse / M. Moritz. – Springer Gabler; Auflage. – 2016. – 304 p.122.National Research Council. Statistical Models and Analysis in Auditing: A Study of StatisticalModels and Methods for Analyzing Nonstandard Mixtures of Distributions in Auditing / NationalResearch Council, Division on Engineering and Physical Sciences, Mathematics, and ApplicationsCommission on Physical Sciences, Board on Mathematical Sciences, Committee on Applied andTheoretical Statistics, Panel on Nonstandard Mixtures of Distributions.
– National Academies Press.– 1988. –104 p.123.Neter, J. Dollar Unit Sampling: Multinomial Bounds for Total Overstatement andUnderstatement Errors / J. Neter, R.A. Leitch, S.E. Fienberg // The Accounting Review. – 1978.– Vol.53(1). – P.77-93.124.Neter, J. Robust Bayesian Bounds for Monetary Unit Sampling in Auditing / J. Neter,J.T. Godfrey // Journal of Applied Statistics. – 1985. – Vol.34(2). – P.157-168.125.Neymaan, J. On the two different aspects of the representative methods.
The method stratifiedsampling and the method of purposive selection / J. Neymaan // Journal of Royal Statistical Society.– 1934. – Vol.97(4). – P.558-606.126.Ogliore, R.C. Ratio estimation in SIMS analysis / R.C. Ogliore, G.R. Huss GR, K. Nagashima// Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materialsand Atoms. – 2011. Vol.269(17).
– P.1910-1918.213 127.Panel on nonstandard mixtures of distributions. Statistical models and analysis in auditing /Panel on nonstandard mixtures of distributions // Statistical Science. – 1989. Vol.4(2). – P.2-33.128.Peek, L.E. AICPA Nonstatistical Audit Sampling Guidelines: A Simulation. Auditing /L.E. Peek, J. Neter, C. Warren // A Journal of Practice & Theory. – 1991. – Vol.10(2). – 33-48.129.Plackett, R.
L. Karl Pearson and the Chi-Squared Test / R.L. Plackett // International StatisticalReview. International Statistical Institute (ISI). – 1983. – Vol.51(1). – P.59-72.130.Plante, R. A lower multinomial bound for the total overstatement error in accountingpopulations / R.Plante, J. Neter, R.A. Leitch // Management Science. – 1984. – Vol.30(1).
– P.37–50.131.Plante, R. Comparative performance of multinomial, cell, and Stringer bounds / R. Plante,J. Neter and R.A. Leitch // Auditing: A Journal of Practice & Theory. – 1985. – Vol.5(1). – P.40-56.132.Porter, B. Principles of External Auditing / B. Porter, J. Simon, D. Hatherley. – 4th Edition.– Wiley. – 2014. 882 p.133.Puttick, G.
The Principles of Practice of Auditing / G. Puttick, V.S. Esch. – Juta Academic;9th Edition. – 2008. – 528 p.134.Ridilla, R.A. A Simplified Statistical Technique for Use in Verifying Accounts Receivable:A rejoinder / R.A. Ridilla // Accounting Review. – 1960. Vol.35(2). – P.218-222.135.Ridilla, R.A. Simplified Statistical Technique for Use in Verifying Accounts Receivable /R.A.
Ridilla // Accounting Review. – 1959. – Vol.34(4). – P.547-554.136.Rohrbach, K.J.Sample size determination using the augmented variance estimator /K.J. Rohrbach // Auditing: A Journal of Practice & Theory. – 1997. – Vol.16(1). – P.124-137.137.Rohrbach, K.J. Variance augmentation to achieve nominal coverage probability in samplingfrom audit populations / K.J. Rohrbach // Auditing: A Journal of Practice & Theory. – 1993.– Vol.12(2). – P.79-97.138.Rouaud, M. Probability, Statistics and Estimation: Propagation of Uncertainties inExperimental Measurement / M.
Rouaud. – Mathieu ROUAUD. – 2017. – 252 p.139.Roxas, M. Financial statement fraud detection using ratio and digital analysis / M. Roxas //Journal of Leadership, Accountability and Ethics. – 2011. – Vol.8(4). – P.56–66.140.Ruskeepaa, H. Mathematica Navigator: Mathematics, Statistics and Graphics / H. Ruskeepaa.– Academic Press. – 3th Edition. – 2009. – 1136 p.141.Schreuder, H.T. Sampling Methods for Multiresource Forest Inventory / H.T. Schreuder,T.G. Gregoire, G.B. Wood. – Wiley. – 1993. 464 p.142.Smith, E.M.
A Quasi-Bayesian Audit Risk Model for Dollaer Unit Sampling: A Comment /M.E. Smith // The accounting review. – 1984. – Vol.59(3). – P.524-525.143.Stringer, K.W. Practical Aspects of Statistical Auditing. In / K.W. Stringer // Proceeding ofBusiness and Economic Statistics Section of the American Statistical Association.
– 1963.– P.405-411.214 144.Sturges, H. The choice of a class-interval / H. Sturges // Journal of the American StatisticalAssociation. – 1926. – Vol.21(153). – P.65-66.145.Swinamer, K. Optimal bounds used in dollar-unit sampling: A comparison of reliability andefficiency / K. Swinamer, M. Lesperance, H. Will // Communications in Statistics. – 2004.– Vol.33(1). – P.109–143.146.Tamura, H. Estimation of Rare Errors Using Expert Judgement / H.













