Главная » Просмотр файлов » М.Г. Иванов - Как понимать квантовую физику

М.Г. Иванов - Как понимать квантовую физику (1129349), страница 80

Файл №1129349 М.Г. Иванов - Как понимать квантовую физику (М.Г. Иванов - Как понимать квантовую физику) 80 страницаМ.Г. Иванов - Как понимать квантовую физику (1129349) страница 802019-05-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 80)

К моменту экзамена это обычно проходит.15.4. С ПИН 1443Базисные состояния с определённым значением σ (проекции на ось z)принято обозначать по-разному:⎛ ⎞⎛ ⎞⎛ ⎞001|1, +1 = ⎝ 0 ⎠, |1, 0 = ⎝ 1 ⎠, |1, −1 = ⎝ 0 ⎠.10015.4.1. Вращения для спина 1 и для векторовОператор поворота для спина 1, как и для любого другого момента,задаётся формулойRn (ϕ) = eiϕŝn .Поскольку собственные числа ŝn равны +1, 0, −1, их третья степень, каки для σ-матриц, даёт исходную матрицу. Таким образом,s3n = sn⇒∀n = 0, 1, 2, .

. . ,s2n+2= s2n = s0n = E,ns2n+1= sn .n(15.16)Аналогичные соотношения мы получали ранее, для генераторов матриц поворота в трёхмерном пространстве (15.2). В этом состоит специфика спина 1.Разлагая экспоненту в ряд, получаем:Rn (ϕ) = eiϕŝn =∞∞∞(iϕŝn )n(iϕ)2n+1(iϕ)2n+ŝ2n,= E + ŝnn!(2n + 1)!(2n)!n=0n=0n=1 i sin ϕRn (ϕ) = E + ŝn i sin ϕ +⎛ŝ2n⎞n−+nz √0⎟⎜2⎟⎜ n+n− ⎟⎜ √0 √ ⎟,ŝn = ⎜2 ⎟⎜ 2⎠⎝n+0 √ −nz2(cos ϕ−1)(cos ϕ − 1),⎛n− 21 + n2z nz n−√⎜ 222⎜⎜ nz n+− nz n−22√ŝn = ⎜⎜ √2 1 − n z2⎜⎝ n+ 2 − nz n+ 1 + n2z√222⎞⎟⎟⎟⎟.⎟⎟⎠Выше (см.

15.1.1 «Генераторы вращений (л)») мы уже получали трёхмерное неприводимое представление группы вращений с помощью обычных ортогональных матриц поворотов. Вернулись ли мы к тому же самомупредставлению в иной форме, или получили что-то новое?444ГЛАВА 15Если мы следующим образом свяжем базис состояний {|1, m}+1m=−1с базисом единичных векторов вдоль декартовых осей координат {eα }3α=1 ,то матрицы jα , генерирующие ортогональные матрицы поворотов перейдут,в матрицы компонент ŝα спина 1:|1, +1 =ex =− ex − ieye+= −√ ,√22− |1, +1 + |1, −1,√2|1, 0 = ez ,ey =|1, −1 =i|1, +1 + i|1, −1,√2ex − ieye−=√ .√22(15.17)ez = |1, 0.(15.18)Таким образом, представление группы вращений для спина 1 с точностью до комплексной замены базиса совпадает с привычным нам изстереометрии и классической механики векторным представлением группы вращений, когда повороты отождествляются с матрицами собственныхвращений, действующими на векторы из R3 .15.4.2.

Спин и поляризация фотонаФотон — квант электромагнитного поля. Как мы обсуждали в разделе 12.11 «Квантованные поля (ф*)», при квантовании электромагнитногополя в ящике с периодическими граничными условиями каждой моде колебаний, характеризующейся волновым числом k и поляризацией σ, ставится в соответствие гармонический осциллятор с частотой, равной частотемоды. Число заполнения данного осциллятора рассматривается как числофотонов с данными k и σ.Каков спин фотона? Этот вопрос эквивалентен вопросу о том, как переменная, характеризующая фотон, но не связанная с его движением (т. е. поляризация), преобразуются при вращениях.Поляризация σ электромагнитной волны описывается с помощью вектора поляризации eσ .

Как мы установили выше (15.17), (15.18), векторпреобразуется по представлению спина 1. То есть фотон — векторная частица — частица со спином 1.Однако у частицы со спином 1 должно быть 3 поляризации, а у фотона — только 2. Какая поляризация пропала?Рассмотрим одну конкретную моду колебаний. Пусть волновой вектор k (и импульс h̄k) направлен по оси z. В соответствии с уравнениями (15.18) спиновые состояния соответствуют следующим поляризациям:15.5.

С ЛОЖЕНИЕМОМЕНТОВ *445−e −iexy√• |1, +1 =— спин направлен вдоль импульса — правая кру2говая поляризация (вращение поля связано с направлением k правымвинтом);e −ie• |1, −1 = x√2 y — спин направлен против импульса — левая круговаяполяризация (вращение поля связано с направлением k левым винтом);• |1, 0 = ez — проекция спина на импульс равна нулю — продольнаяполяризация (поле колеблется вдоль импульса).Однако электромагнитная волна — поперечная волна и продольная поляризация для неё отсутствует.

Если мы задаём поляризацию электромагнитной волны направлением вектора E, то продольная поляризация отсутствует с самого начала, а если направлением векторного потенциала A,то вклад в поле продольной части A в точности компенсируется вкладомскалярного потенциала ϕ. Так и для квантованного электромагнитного поля (в зависимости от используемого формализма): продольная поляризациялибо отсутствует с самого начала, либо нефизична (не даёт вклада).Такая ситуация является типичной для любых безмассовых (движущихся со скоростью света) частиц: вне зависимости от спина имеется двеполяризации: по часовой стрелке (проекция спина на импульс +s) и противчасовой стрелки (проекция спина на импульс −s). Это связано с тем, чтомы не можем выбрать для такой частицы систему покоя, в любой системеотсчёта есть выделенное направление (вдоль импульса), и симметрия оказывается ниже, чем стандартная SU(2).

Иногда для таких частиц избегаютприменять слово спин и говорят спиральность.15.5. Сложение моментов*Пусть система состоит из двух подсистем, для каждой из которых; ;определены операторы момента импульса j1 и j2 . Пусть также для каждойиз подсистем определён квадрат момента импульса (j1 (j1 + 1) и j2 (j2 ++ 1) соответственно). Для системы мы можем ввести базис, состоящий изсостояний вида|m1 |m2 = |j1 , m1 |j1 , m2 .(В обозначении |m1 |m2 мы опустили фиксированные квантовые числа j1и j2 .)Таким образом, мы имеем базис собственных векторов для операторовĵ12 , ĵ1z , ĵ22 , ĵ2z .

Наша задача — построить базис собственных векторов для;;операторов суммарного момента Jˆ2 = (j1 + j2 )2 и Jˆz = ĵ1z + ĵ2z .446ГЛАВА 15(*) С точки зрения теории представлений, мы имеем произведениедвух неприводимых представлений группы SU(2), отвечающих моментам j1 и j2 , и нам надо разложить произведение в сумму неприводимыхпредставлений.Проще всего с оператором Jˆz . Базисные состояния |m1 |m2 для негоуже является собственными:Jˆz |m1 |m2 = (ĵ1z + ĵ2z )|m1 |m2 = (m1 + m2 ) |m1 |m2 = M |m1 |m2 . MЕсли отложить по осям координат квантовые числа m1 и m2 , то новоеквантовое число M надо будет откладывать по оси, направленной по диагонали (см.

рис. 15.4). При этом, M пробегает с шагом 1 все значения от−(j1 + j2 ) до j1 + j2 . Кратность различных значений M (число точек, натонких линиях поперёк оси M на рис. 15.4) меняется от 1 (при M = ±(j1 ++ j2 )) до 2j1 + 1, где j1 — наименьший из двух моментов.M = m1 + m2m1j1 + j221j110 1-4 -3 -2 -1-1-2 -1-3-2-4-5-623456j223456m2–(j1 + j2)Рис. 15.4. Связь M с m1 и m2 .Начнём с состояния с максимальным значением проекции момента.Такое состояние только одно: |j1 |j2 . Под действием оператора Jˆ+ = ĵ1+ ++ ĵ2+ оно обнуляетсяJˆ+ |j1 |j2 = (ĵ1+ + ĵ2+ )|j1 |j2 = (ĵ1+ |j1 ) |j2 + |j1 (ĵ2+ |j2 ) = 0, 0015.5. С ЛОЖЕНИЕМОМЕНТОВ *447значит в этом состоянии проекция момента достигает максимальной величины и мы можем записать первый вектор нового базиса:| j1 + j2 , j1 + j2 = |j1 |j2 . JMДействуя 2(j1 +j2 ) раз на состояния |j1 +j2 , j1 +j2 понижающим оператором Jˆ− = ĵ1− + ĵ2 , мы можем найти остальные состояния, для которыхJ = j1 + j2 , а M меняется от −J до +J с шагом 1.

((*) Тем самым мы выделяем первое неприводимое представление, отвечающее моменту j1 + j2 .)В частности однократное применение понижающего оператора даёт:Jˆ− |j1 + j2 , j1 + j2 =2(j1 + j2 )|j1 + j2 , j1 + j2 − 1 == (ĵ1− + ĵ2− )|j1 |j2 = (ĵ1− |j1 )|j2 + |j1 (ĵ2− |j2 ) == 2j1 |j1 − 1|j2 + 2j2 |j1 |j2 − 1,√√j1 |j1 − 1|j2 + j2 |j1 |j2 − 1.| j1 + j2 , j1 + j2 − 1 =√ j1 + j2JMУ нас имеется два линейно независимых состояния, для которых M == j1 + j2 − 1 (см. рис. 15.4).

Если из тех же состояний составить комбинацию, ортогональную состоянию |j1 + j2 , j1 + j2 − 1, то мы получим√√j2 |j1 − 1|j2 − j1 |j1 |j2 − 1.| j1 + j2 − 1, j1 + j2 − 1 =√ j1 + j2JMТо, что в данном состоянии J = M , проверяется с помощью повышающегооператора:Jˆ+ ( j2 |j1 −1|j2 − j1 |j1 |j2 −1) = 2j1 j2 |j1 |j2 − 2j1 j2 |j1 |j2 = 0.

j1+ | . . . j2+ | . . . Из состояния |j1 + j2 − 1, j1 + j2 − 1 с помощью понижающего оператораJˆ− мы получаем остальные состояния с J = j1 + j2 − 1 и другими M .Таким образом, мы из соображений ортогональности находим все состояния вида |J, J при J = j1 + j2 , j1 + j2 − 1, . . . , |j1 − j2 |. С помощьюоператора Jˆ− мы получаем все состояния |J, M , для которых M < J.448ГЛАВА 15Общее число состояний нового базиса такое же, как у старого:j1 +j2(2J + 1) = (j1 + j2 − |j1 − j2 | + 1) (j1 + j2 + |j1 − j2 | + 1) =J=|j1 −j2 |число слагаемыхсреднее слагаемое= (2j1 + 1)(2j2 + 1).(*) Таким образом, мы разлагаем произведение неприводимых представлений группы вращений, отвечающих моментам j1 и j2 , в сумму неприводимых представлений, отвечающих моментам j1 +j2 , j1 +j2 −1, .

. . , |j1 −− j2 |.Коэффициенты разложения векторов нового базиса по старомуm1 , m2 |J, M называются коэффициентами векторного сложения или коэффициентамиКлебша – Гордана, они образуют унитарную матрицу, т. к. описывают ортонормированную замену координат.

Как и всякие скалярные произведенияортонормированных волновых функций, коэффициенты Клебша – Горданазадают амплитуды перехода между соответствующими состояниями.15.5.1. Сложение спинов12+12Проиллюстрируем процедуру сложения моментов импульса на простейшем случае двух спинов 12 .В соответствии с общей схемой, начнём с состояния с максимальнойпроекцией момента:|1, 1 = |+|+,√Ŝ− |1, 1 = 2|1, 0 = (ŝ1− + ŝ2− )|+|+ == (ŝ1− |+) |+ + |+ (ŝ2− |+) = |−|+ + |+|−, |−|−|1, 0 =Ŝ− |1, 0 =√|−|+ + |+|−,√22|1, −1 = (ŝ1− + ŝ2− )=|−|+ + |+|−=√2|−(ŝ2− |+) + (ŝ1− |+)|−√215.5. С ЛОЖЕНИЕМОМЕНТОВ *449|1, −1 = |−|−.Состояние |0, 0 получаем как линейную комбинацию состояний |+|−и |−|+ (состояния с нулевой проекцией спина), ортогональную состоянию |1, 0:|−|+ − |+|−|0, 0 =.√2Все состояния с суммарным спином 1 оказались чётными, относительно перестановки спинов, а состояние с суммарным спином 0 — нечётным.Если спины относятся с двум тождественным частицам (фермионам,т.

Характеристики

Тип файла
PDF-файл
Размер
4,36 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее