Главная » Просмотр файлов » А.М. Попов, О.В. Тихонова - Лекции по атомной физике

А.М. Попов, О.В. Тихонова - Лекции по атомной физике (1120656), страница 32

Файл №1120656 А.М. Попов, О.В. Тихонова - Лекции по атомной физике (А.М. Попов, О.В. Тихонова - Лекции по атомной физике) 32 страницаА.М. Попов, О.В. Тихонова - Лекции по атомной физике (1120656) страница 322019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 32)

такое состояние невозможно. Этот принцип (известный также как принцип запретаПаули) был сформулирован В.Паули еще до создания квантовой механики на основеанализа атомных спектров.Как мы увидим в дальнейшем, принцип Паули необходим для понимания строения электронных оболочек атомов. Поэтому дадим и другую формулировку принципа,часто использующуюся в атомной физике. Поскольку волновая функция атомного электрона однозначно задается квантовыми числами n, l, ml , m s , то можно утверждать, что ватоме не может быть двух электронов, характеризующихся одним и тем же наборомквантовых чисел.Из сказанного ясно, что статистические свойства ансамбля частиц с различнымзначением спина (целого, или полуцелого) оказываются различными.

Принцип Паули непозволяет частицам с полуцелым спином (например, электронам) занять состояние сминимальной энергией. Частицы оказываются распределены по энергетическим уровням, причем чем больше число частиц в ансамбле, тем более высокие состояния оказываются заселены.

В результате средняя энергия ансамбля частиц зависит от их количества и отлична от нуля даже при нулевой температуре. Как следствие, ансамбль макроскопически большого числа частиц не подчиняется законам классической статистики, остается квантовым при достаточно низких температурах2. Типичным примером такого ансамбля является электронный газ в металлах, который остается квантовым объектом притемпературах вплоть до температуры кипения вещества. Статистические свойства ансамбля частиц с полуцелым спином описываются распределением Ферми3 – Дирака. Поэтому частицы с полуцелым спином называют ферми- частицами, или фермионами.Что касается частиц с целым спином, то они могут находиться в одном и том жеквантовом состоянии, более того, учет свойств симметрии волновой функции приводитк увеличению вероятности оказаться в одном и том же состоянии по сравнению с расчетами, не учитывающими это свойство.

В результате для частиц с целым спином заселенность основного энергетического состояния оказывается больше, чем в теории, не учитывающей свойства симметрии волновой функции относительно их перестановки местами4. В результате при отличных от нуля температурах макроскопически большое число частиц оказывается в состоянии с минимальной энергией – наблюдается явление Бозе5- Эйнштейновской конденсации. Это означает, что статистические свойства ансамблячастиц с целым спином также отличаются от свойств ансамбля классических частиц и2С повышением температуры частицы заселяют все более высокие энергетические состояния, в результате вероятность для двух частиц попасть в одно и то же состояние падает, и мы постепенно переходим кклассическому статистическому распределению.3E.Fermi (1901-1954) – итальянский физик, Нобелевская премия (1938) «За открытие искусственной радиоактивности …»4Такой случай соответствует классической статистической теории.5Sh.Bose (1894-1974) – индийский физик.129130описываются распределением Бозе - Эйнштейна.

Соответственно, частицы с целым значением спина принято называть бозе- частицами или бозонами.Именно с возникновением бозе-конденсата связаны такие макроскопическиеквантовые явления как сверхтекучесть и сверхпроводимость. Причем для возникновениясверхпроводящего состояния необходимо, чтобы в электронном газе произошло спаривание электронов с противоположными спинами. Такие электронные пары (их называюткуперовскими6) возникают при определенных условиях в результате взаимодействияэлектронов с кристаллической решеткой и могут быть рассмотрены как бозе – частицы.Бозе-конденсация куперовских пар и означает переход в сверхпроводящее состояние.Таким образом, свойства симметрии волновой функции системы тождественныхчастиц относительно их перестановки местами ведут к совершенно различным статистическим распределениям в ансамбле частиц7. В качестве еще одного примера проявления свойств симметрии волновой функции в макроскопическом мире рассмотрим возникновения сверхтекучески в жидком гелии.

Наиболее широко распространенным изотопом гелия является 24 He . Атомное ядро этого изотопа имеет нулевой спин (являетсябозоном). Электронная оболочка атома в основном состоянии также характеризуетсянулевым значением полного механического момента. Поэтому атом в целом имеет нулевой механический момент количества движения и может быть рассмотрен как бозесистема. При определенном значении температуры ( T * = 2.17 К) в жидком гелии наблюдается явлении бозе-конденсации, что и означает возникновение сверхтекучей фазывещества. Известен и другой изотоп гелия - 23 He .

У этого атома точно такое же строениеэлектронной оболочки, в ядре же имеется один нескомпенсированный спин нейтрона, врезультате чего атомное ядро, а, следовательно, и атом в целом оказывается ферми –системой. В системе фермионов возникновение бозе-конденсации невозможно, а, следовательно, невозможно и явление сверхтекучести. И действительно, при температурах внесколько градусов Кельвина в жидком гелии 3 He сверхтекучесть не наблюдается. В1972-74 годах было установлено, что в 3 He сверхтекучесть возникает лишь при температурах меньших T * = 2.6 ⋅ 10 −3 К. Возможность возникновения сверхтекучести в 3 Heобусловлена следующим.

При таких низких температурах силы притяжения между атомами (силы Ван-дер-Ваальса) приводят к образованию молекулярных комплексов3He 2 . В отличие от атомов 3 He эти молекулярные комплексы являются бозечастицами, что и приводит, в конечном счете, к возникновению сверхтекучести. Подводя итог сказанному, мы бы хотели отметить еще раз, что совершенно различные свойства систем из ферми- и бозе – частиц не связаны с каким-либо новым физическим взаимодействием между ними, а являются проявлением свойств симметрии волной функциисистемы частиц.В заключение этого раздела ответим на важный вопрос, который обсуждался нами при анализе корпускулярных и волновых свойств микрочастиц (Л_2).

А именно, почему, несмотря на то, что отдельным микрочастицам (например, фотонам, электронам)присущи как корпускулярные, так и волновые свойства, когда мы говорим об электромагнитном излучении, мы обычно говорим о волновом поле, которое при определенныхусловиях проявляет корпускулярные свойства. И, наоборот, когда мы говорим об элек-(6)Куперовские пары – по имени Л.Купера (L.Cooper, р.1930) - одного из создателей современной теориисверхпроводимости, Нобелевская премия (1972).7В квантовой теории доказывается теорема, утверждающая, что совокупности частиц с целым и полуцелым спином должны описываться соответственно симметричной и антисимметричной волновой функциейотносительно перестановки частиц местами (теорема о связи спина и статистики).130131тронах, то обычно имеем в виду частицы, которым, бывает, присущи и волновые свойства.

То есть для ансамбля частиц возникает некоторая асимметрия в описании. Причиназдесь в связи спина со статистикой. Совокупность большого числа фотонов, которые являются бозонами, может находиться в одном и том же квантовом состоянии, что приводит к возможности возникновения классического электромагнитного поля8.

При рассмотрении электромагнитных явлений, как правило, мы имеем дело с огромным количеством фотонов, которые практически всегда образуют классическое поле.9 В такой ситуации обнаружить квантовые свойства излучения оказывается не всегда возможно. Наоборот, если говорить о совокупности электронов, образование классического электронного поля принципиально невозможно. Принцип Паули не позволяет даже двум электронам занять одно и тоже квантовое состояние.

В результате волновое поле оказывается всегда квантовым, и прежде всего проявляются корпускулярные свойства объекта.Многоэлектронный атом.Приближение самомогласованного поля.Перейдем теперь к изучению свойств многоэлектронных атомов. В общем случаеволновая функция такой системы есть ψ (ξ1 ,..., ξ Z ) , где ξ i ( i = 1,..., Z ) - совокупность координат всех атомных электронов.

Мы уже отмечали, что взаимодействие между электронами делает невозможным введение одноэлектронных волновых функций. Поэтомудля описания стационарных состояний атома с Z электронами, вообще говоря, необходимо решать стационарное уравнение Шредингера в 3Z - мерном пространстве. Такаязадача не может быть решена точно даже для случая Z = 2 , поэтому необходимо искатьприближенные подходы к решению задачи.Многоэлектронный атом, как правило, рассматривают в приближении самосогласованного поля Хартри. Как уже отмечалось ранее (см. Л_5), основная идея этого подхода заключается в следующем.

Состояние каждого из электронов описывается свойволновой функцией ψ i (ξ i ) , которая определяется из одночастичного уравнения Шредингера, описывающего движение i -го электрона в самосогласованном потенциале,созданным ядром плюс всей совокупностью электронов, кроме заданного. При этом существенно, что самосогласованный потенциал сохраняет центральную симметрию, поэтому оказывается возможным выделение угловой части одноэлектронной волновойфункции и введение квантовых чисел n, l, ml , характеризующих координатную волновую функцию. Кроме того, спиновое состояние электрона характеризуется квантовымчислом m s , то есть в приближении самосогласованного поля возникает тот же самыйнабор квантовых чисел, который мы использовали при описании состояния одноэлектронного атома10.Более подробно рассмотрим эту схему на примере двухэлектронного атома (атома гелия).

Характеристики

Тип файла
PDF-файл
Размер
6,23 Mb
Тип материала
Предмет
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6455
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее