Главная » Просмотр файлов » Н.Г. Гончарова, Б.С. Ишханов, И.М. Капитонов - Частицы и атомные ядра. Задачи с решениями и комментариями

Н.Г. Гончарова, Б.С. Ишханов, И.М. Капитонов - Частицы и атомные ядра. Задачи с решениями и комментариями (1120465), страница 29

Файл №1120465 Н.Г. Гончарова, Б.С. Ишханов, И.М. Капитонов - Частицы и атомные ядра. Задачи с решениями и комментариями (Н.Г. Гончарова, Б.С. Ишханов, И.М. Капитонов - Частицы и атомные ядра. Задачи с решениями и комментариями) 29 страницаН.Г. Гончарова, Б.С. Ишханов, И.М. Капитонов - Частицы и атомные ядра. Задачи с решениями и комментариями (1120465) страница 292019-05-09СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 29)

е. уносимого частицами момента количества движения. Рассмотрим влияние этих факторов на примереβ -распада ядра 6027 Co (рис. 1.10.1).Рис. 1.10.1. β -распад ядра6027 Co§1.10. Распады нестабильных ядер139Возбужденные состояния ядра 6028 Ni представляют собой типичныйспектр коллективных колебаний.

Энергетический интервал между первым и основным состояниями близок к интервалу между первым и тремя следующими состояниями (2,16; 2,28 и 2,51 МэВ). Ядро 6027 Co может−превращаться в ядро-изобар 6028 Ni путем β -распада по несколькимэнергетически возможным каналам:1) в основное состояние конечного ядра,2) в первое возбужденное состояние со спином-четностью 2+ ,3) в три следующих состояния (2,16; 2,28; и 2,51 МэВ) со спиномчетностью соответственно 2+ , 0+ и 4+ .Энергетически наиболее выгоден первый канал, для которого суммакинетических энергий, выделяющихся в β -распаде, максимальна. Однако в действительности практически 100 % β -переходов происходитпо наименее энергетически выгодному пути из вышереречисленных,+т. е. на четвертый возбужденный уровень 6028 Ni со спин-четностью 4 .Для понимания причины того, почему именно этот канал распада оказывается наиболее вероятным, рассмотрим закон сохранения моментаколичества движения применительно к β -распаду ядра 60 Co:−→ 6028 Ni + e + ν e ,= JNi + se + sν + le+ν .6027 CoJCo(1.10.23)Здесь le+ν сумма орбитальных моментов, уносимых лептонами β -распада.Распишем закон сохранения момента (1.10.23) для вышеперечисленных каналов β -распада 6027 Co и найдем возможные значения le+ν длякаждого канала:111) 5 = 0 + + + le+ν ⇒ le+ν = 4, 5, 6.2)3)22115 = 2 + + + le+ν ⇒ le+ν = 2, 3, 4, 5, 6, 7, 8.22115 = 4 + + + le+ν ⇒ le+ν = 0, 1, 2, .

. . , 9, 10.22Применение закона сохранения момента количества движения к перечисленным возможным каналам распада ядра 6027 Co показывает, чтотолько при β -распаде на возбужденный уровень со спином 4 орбитальный момент, уносимый электроном и нейтрино, может быть равен нулю. Это так называемый «разрешенный» переход. Он и осуществляется почти со 100 % вероятностью, хотя энергетически из всехперечисленных каналов распада он наименее выгоден. Отметим, чтовлияние энергии перехода на вероятность β -распада отчетливо проявляется при сравнении скоростей двух одинаковых по спину и четностиβ -переходов: 5+ → 2+ (2,16 МэВ) и 5+ → 2+ (1,33 МэВ).

Второй изних идет с бо́льшим энерговыделением и поэтому происходит с большей (почти на порядок) вероятностью.140Гл. 1. Теоретический обзорХотя прямое доказательство того факта, что β -распад с нулевымзначением орбитального момента лептонов имеет наибольшую вероятность, осуществляется лишь методами квантовой теории, помочь в понимании этого явления может «классическая» оценка максимальногозначения орбитального момента лептонов распада.

Одновременно этаоценка служит иллюстрацией соотношения классической и квантовойтеорий. С классической точки зрения, максимальное значение орбитального момента лептонов распада равно h̄lmax = Rpmax , где R —радиус ядра, а pmax — максимальное значение суммарного импульсапары лептонов.

В пределе, когда максимальная кинетическая энергияраспада Tmax уносится антинейтрино, Tmax = pmax c. Тогда максимальный орбитальный момент (в единицах h̄) оказывается равнымlmax =Rpmax cRTmax= 1.h̄ch̄c(1.10.24)В рассматриваемом нами случае β -распада 6027 Co оценка (1.10.24) даетlmax 6 · 10−3 . Таким образом, в «классическом» пределе вылет лептонов с ненулевым орбитальным моментом вообще невозможен, «запрещен».

β -Распад, в котором орбитальный момент, уносимый лептонами,равен нулю, называется «разрешенным». Орбитальному моменту 1соответствует «запрещенный» переход первого порядка, орбитальному моменту 2 — «запрещенный» переход второго порядка и так далее. Если разрешенные каналы распада энергетически невозможны —«закрыты» — осуществляется «запрещенный» β -распад, но вероятность его будет мала, а среднее время жизни и период полураспада — велики.

Примером такого β -перехода является распад ядра 4019 K(см. рис. 1.10.2). Спин и четность основного состояния этого ядра равны 4− . Ядро 4019 K может испытывать e-захват (с вероятностью 10,7 %),−40превращаясь в 4018 Ar, либо β -распад в основное состояние ядра 20 Ca(89,3 %). Оба канала соответствуют «запрещенным» β -переходам с запретами второго и третьего порядков. В итоге β -распад 4019 K происходитс периодом полураспада 1,25 · 109 лет. Сравнение количества аргона-40и калия-40 в минералах является методом определения возраста горныхпород.Задача 1.10.9. Оценить верхнюю границу возраста Земли T ,считая, что весь присутствующий на Земле аргон-40 возник в результате e-захвата из 40 K.

В настоящее время на 1 ядро 40 Kприходится примерно 300 ядер аргона-40. Период полураспада t1/2ядра 40 K равен 1,25 · 109 лет. Ядра 40 K испытывают e-захват с вероятностью около 10,7 % и с вероятностью 89,3 % превращаютсяв ядра 40 Ca путем β − -распада (см. рис. 1.10.2).141§1.10. Распады нестабильных ядерРис.

1.10.2. β -распад ядра4019 KЧисло ядер аргона равно числу распавшихся за время T ядер 40 K,умноженному на вероятность e-захвата:T ln 2NAr (T ) = 0,107 [NK (0) − NK (T )] = 0,107 · NK (0) 1 − exp −;t1/2 (K)T ln 2.NK (0) = NK (T ) expt1/2 (K)ОтсюдаNAr (T )= 300 = 0,107 expNK (T )T ln 2t1/2 (K)−1и T ≈ 1,5 · 1010 лет.Существует полезное правило, связывающее вероятность β -распадас его энергией Qβ . Это правило носит название правила Сарджентаи сводится к утверждению, что при больших энерговыделениях вероятность β -распада зависит от Qβ в пятой степени:λβ =1ln 2=∼ Q5β .τβt1/2 (β)(1.10.25)Здесь λβ — константа распада β -радиоактивного ядра, τβ и t1/2 (β) —его время жизни и период полураспада.Правило Сарджента полезно для оценок вероятностей слабых распадов элементарных частиц.

Резкий рост вероятности слабого распадас энергией объясняется быстрым увеличением числа доступных конечных состояний с возрастанием этой энергии. Последнее, в своюочередь, обусловлено тем, что в конечном состоянии образуется тричастицы с произвольным распределением энергии между ними, чтомногократно увеличивает кинематические варианты для образующихсячастиц, особенно с ростом энергии, или, как говорят, увеличиваетдоступный фазовый объем. Таким образом, правило Сарджента имеетстатистическую природу.142Гл. 1.

Теоретический обзор1.10.4. Электромагнитное излучение атомных ядер. Явлениеγ -излучения ядер состоит в том, что ядро испускает γ -квант без изменения массового числа A и заряда ядра Z . Гамма-излучение возникаетпри распаде возбужденного состояния ядра. Спектр γ -излучения всегдадискретен из-за дискретности ядерных уровней. С точностью до незначительной энергии отдачи ядра (формула (1.10.21)) энергия γ -переходаравна разности энергий уровней. Изучая γ -спектры, получают информацию о ядерных уровнях (их энергиях, спинах и четностях).Следует подчеркнуть, что γ -распад ядра и его возбуждение γ -квантом — это, по сути, одни и те же квантово-механические процессы,связанные принципом обратимости времени (рис.

1.10.3). Об этихпроцессах мы будем говорить как об электромагнитных переходахв атомных ядрах, не указывая без особой необходимости, испущенбыл γ -квант ядром или поглощен.Рис. 1.10.3. Гамма-переходы между двумя уровнями ядраГамма-переходы происходят между ядерными состояниями, характеризующимися определенными значениями энергии, спина J и четности P .

Поэтому γ -переходы между ними, а следовательно, и испускаемые (поглощаемые) фотоны также имеют определенные значенияполного момента Jγ и четности Pγ . Из закона сохранения полногомомента количества движения и четности следуетJf = Ji + Jγ или |Ji + Jf | Jγ Ji + Jf ,Pf = Pi · Pγ или Pγ = Pi · Pf .(1.10.26)Рассмотрим классификацию фотонов по моменту и четности. Спинфотона Sγ равен 1, т. е.Sγ = (Jγ )min = 1.Квантовое число полного момента количества движения фотона Jγпринимает целочисленные значения, начиная с единицы: Jγ = 1 (дипольный), 2 (квадрупольный), 3 (октупольный) и так далее.γПолный момент фотона Jγ равен векторной сумме его спина Sγ + L γ .

Далее опускаем индекс γ : Jγ = Sи орбитального момента Lγ у полного и орбитального моментов фотона. Для фиксированногоJ фотона L = J ± 1, J . Внутренняя четность фотона отрицательна(как кванта векторного поля). Поэтому полная четность фотона есть143§1.10. Распады нестабильных ядерпроизведение его внутренней четности (−1) и орбитальной четности (−1)LPγ = πγ (−1)L = (−1)L+1 .(1.10.27)Для фотонов с определенным J имеем разные L и, следовательно,разные четности (опускаем индекс γ у четности фотона):L = J , P = (−1)J+1 — магнитные (MJ) фотоны;L = J ± 1, P = (−1)J — электрические (EJ) фотоны.Названия «магнитный» и «электрический» происходят от типа систем зарядов и токов, излучающих соответствующие фотоны.

Характеристики

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее