semT7 (1120437)
Текст из файла
УМФ – семинар – К 5 – 7Метод Фурье для неоднородных уравнений1. № 699mРассмотрим неоднородную начально-краевую задачу для уравнения теплопроводности с однородными краевыми условиями второго рода.ut − a2 uxx = f (x, t),ux (0, t) = ux (l, t) = 0,u(x, 0) = ϕ(x),x ∈ (0, l), t > 0,t > 0,x ∈ [0, l].(1.1)(1.2)(1.3)Шаг 1.
Решение задачи Штурма–Лиувилля.Рассмотрим задачуX”(x) + λX(x) = 0,X0 (0) = X0 (l) = 0.(1.4)(1.5)Задача (1.4)–(1.5) есть задача Штурма–Лиувилля. Общее решение уравнения (1.4) имеет вид√√X(x) = c1 sin( λ x) + c2 cos( λ x)при λ > 0;(1.6)√X(x) = c1 e −λ x + c2 e−X(x) = c1 x + c2√−λ xпри λ < 0;при λ = 0;(1.7)(1.8)√• При λ > 0 имеемиз√краевого условия X0 (0) = 0, что c1 = 0, ⇒ X(x) = c2 cos( λ x) ⇒√00X√ (x) = −c2 λ sin( λ x).
Поэтому из второго краевого условия X (l) = 0 получаем, чтоλ l = πk откуда имеем бесконечное множество собственных чисел задачи Штурма–Лиувилля: πn 2λn =,n ∈ N.(1.9)lИм соответствует бесконечное множество собственных функций: πnx 2Xn (x) = cos,n ∈ N.(1.10)ll(множитель 2l появляется, чтобы система этих функций превратилась из ортогональнойв ортонормированную)√0• При λ < 0 имеемизкраевогоусловияX(0)=0,чтоc=c,⇒X(x)=2cch−λ x ⇒121√√X0 (x) = 2c1 −λ sh( −λ x). Поэтому из второго краевого условия X0 (l) = 0 получаем,что c1 = 0, т.е.
задача Штурма–Лиувилля не имеет отрицательных собственных чисел.• При λ = 0 имеем из краевого условия X0 (0) = 0, что c1 = 0, ⇒ X(x) = c2 . Второекраевое условие X0 (l) = 0 выполнено, поэтому задача Штурма–Лиувилля (1.4)–(1.5)имеет собственное число, равное нулю: λ0 = 0. Ему соответствует собственная функицяX0 (x) ≡ 1l .Итак, мы имеем бесконечное множество нетривиальных решений πn 2 πnx λ0 = 0, X0 (x) ≡ 1; λn =, Xn (x) = cos,llзадачи (1.4)–(1.5).c Д.С. Ткаченко-1-n∈NУМФ – семинар – К 5 – 7Шаг 2. Будем искать решение уравнения ut − a2 uxx = f (x, t) с краевыми условиями ux (0, t) = ux (l, t) = 0 в виде∞Pu(x, t) =Xn Tn (t), где функции Xn (x) имееют вид:n=01X0 (x) ≡ ,lXn (x) = πnx 2cos.ll(1.11)Заметим сразу, что каждое слагаемое приведённого ряда удовлетворяет краевым условиям(1.2), что достаточно (если ряд допускает почленный переход к пределу при x → 0 + 0, x →l = −0) для того, чтобы функция u(x, t), определённая таким образом, также удовлетворялакраевым условиям (1.2).Пусть функция f (x, t) разложена при каждом t ∈ [0, T] в ряд Фурье по косинусам∞ πnx f0 (t) X+cosfn (t).f (x, t) =2ln=1(1.12)При этом, в силу утверждения 8.1 (лекция 8),2fn (t) = (f, Xn ) =lZlf (x, t) cos πnx ldx.(1.13)0Тогда уравнение 1.1 приобретает вид∞XXn (x)T0n (t)n=0∞ πnx f0 (t) Xfn (t) cos+.− a X”n (x)Tn (t) =2ln=12Для его выполнения достаточно, чтобы1 0f0 (t)T0 (t) =l2 πnx 0Xn (x)Tn (t) − a2 X”n (x)Tn (t) = fn (t) coslдля n = 0для n ∈ N,то естьf0 (t)T00 (t) =·l2 πnx πnx (πna)20Tn (t) +T(t)cos=f(t)cosnnl2llдля n = 0для n ∈ N.Это заведомо выполнено, еслиf0 (t)·l2(πna)2T0n (t) +Tn (t) = fn (t)l2T00 (t) =для n = 0(1.14)для n ∈ N,(1.15)Итак мы получили условия на функции Tn (t), достаточные для того, чтобы функция u(x, t) =∞PTn (t) cos πnxбыла (если ряд – "хороший") решением уравнения ut − a2 uxx = f (x, t) сln=0краевыми условиями ux (0, t) = ux (l, t) = 0.Шаг 3.
Решаем задачу (1.1) – (1.3).Из условий задачи (1.1) – (1.3) мы ещё не использовали только начальные условияc Д.С. Ткаченко-2-УМФ – семинар – К 5 – 7u(x, 0) = ϕ(x). Пусть функция ϕ(x), входящая в начальное условие, разлагается в ряд покосинусам∞ πnx ϕ0 Xϕ(x) =+ϕn cos,2ln=12ϕn =lZlϕ(x) cosx ∈ [0, l] πnx lгдеdx.(1.16)(1.17)0Подставим функцию u(x, t) =∞PTn (t) cosn=0πnxl(опять-таки в предположении, что ряд –"хороший") в начальное условие:∞XTn (0) cos πnx n=0l∞ πnx ϕ0 X=+ϕn cos.2ln=1Для выполнения этого равенства достаточно, чтобыϕ02Tn (0) = ϕnT0 (0) =для n = 0для n ∈ N.Таким образом, для функций Tn (t) имеем задачу Коши: T00 (t) = f02(t) · lT0 (0) = ϕ202 T0n (t) + (πna)Tn (t) = fn (t)l2для n = 0(1.18)для n ∈ N.(1.19)Tn (0) = ϕnЭти задачи Коши имеют единственное решение при любых fn ∈ C[0, T] и любых значенияхϕn ∈ R.Всё, что нам осталось сделать, – это подставить решения задач (1.18), (1.19) в формулу∞Pu(x, t) =Tn (t) cos πnx.ln=02.
№ 699m2Решить неоднородную начально-краевую задачу для уравнения колебаний с однороднымикраевыми условиями второго рода.utt − a2 uxx = f (x, t),ux (0, t) = ux (l, t) = 0,u(x, 0) = ϕ(x),ut (x, 0) = ψ(x),x ∈ (0, l), t > 0,t > 0,x ∈ [0, l].x ∈ [0, l].Шаг 1. Решение задачи Штурма–Лиувилля.Этот шаг полностью повторяет Шаг 1. задачи № 699M .c Д.С. Ткаченко-3-(2.1)(2.2)(2.3)(2.4)(2.5)УМФ – семинар – К 5 – 7Шаг 2.
Будем искать решение уравнения utt − a2 uxx = f (x, t) с краевыми условиями ux (0, t) = ux (l, t) = 0 в виде∞Pu(x, t) =Xn Tn (t), где функции Xn (x) имееют вид:n=0X0 (x) ≡ 1, πnx .lПусть функция f (x, t) разложена при каждом t ∈ [0, T ] в ряд Фурье по косинусам∞ πnx f0 (t) X+cosfn (t).f (x, t) =2ln=1Xn (x) = cos(2.6)(2.7)При этом, коэффициенты данного ряда Фурье ищутся по формулам:2fn (t) = (f, Xn ) =lZlf (x, t) cos πnx ldx.(2.8)0Тогда уравнение (2.1) приобретает вид∞Xn=0∞ πnx f0 (t) XXn (x)T ”n (t) − a X”n (x)Tn (t) =+fn (t) cos.2ln=12Для его выполнения достаточно, чтобыf0 (t)2 πnx Xn (x)T ”n (t) − a2 X”n (x)Tn (t) = fn (t) coslT ”0 (t) =для n = 0для n ∈ N,то естьf0 (t)T ”0 (t) =2 πnx πnx (πna)2T ”n (t) +T(t)cos=f(t)cosnnl2llдля n = 0для n ∈ N.Это заведомо выполнено, еслиf0 (t)для n = 0(2.9)2(πna)2T ”n (t) +Tn (t) = fn (t)для n ∈ N,(2.10)l2Итак, мы получили условия на функции Tn (t), достаточные для того, чтобы функция u(x, t) =∞PTn (t) cos πnxбыла(еслиряд–"хороший")решениемуравненияlT ”0 (t) =n=0utt − a2 uxx = f (x, t) с краевыми условиями ux (0, t) = ux (l, t) = 0.Шаг 3.
Решаем задачу (2.1) – (2.4).Из условий задачи (2.1) – (2.4) мы ещё не использовали только начальные условияu(x, 0) = ϕ(x), ut (x, 0) = ψ(x). Пусть функции ϕ(x), ψ(x), входящие в начальные условия,разлагаются в ряд по косинусам∞ πnx ϕ0 Xϕ(x) =+ϕn cos,x ∈ [0, l]где(2.11)2ln=12ϕn =lZlϕ(x) cos0c Д.С. Ткаченко-4- πnx ldx.(2.12)УМФ – семинар – К 5 – 7∞ψ(x) = πnx ψ0 X+ψn cos,2ln=12ψn =lZlψ(x) cosx ∈ [0, l] πnx lгдеdx.(2.13)(2.14)0∞PПодставим функцию u(x, t) =πnxlTn (t) cosn=0(опять-таки в предположении, что ряд – "хо-роший") в начальные условия:∞XTn (0) cos πnx ln=0∞XTn0 (0) cos πnx n=0l∞ πnx ϕ0 X=+ϕn cos;2ln=1∞= πnx ψ0 X+ψn cos.2ln=1Для выполнения этих равенств достаточно, чтобыϕ02Tn (0) = ϕnψ020Tn (0) = ψnT00 (0) =T0 (0) =для n = 0для n ∈ N.Таким образом, из (2.9), (2.10) и (2.11) – (2.12), для функций Tn (t) имеем задачу Коши:T ”0 (t) = f02(t)для n = 0(2.15)T0 (0) = ϕ20 0T0 (0) = ψ202T ”n (t) + (πna)Tn (t) = fn (t)2lдля n ∈ N.(2.16)Tn (0) = ϕn 0Tn (0) = ψnЭти задачи Коши имеют единственное решение при любых fn ∈ C[0, T ] и любых значенияхϕn ∈ R, ψn ∈ R.При n = 0:T0 (t) =ϕ0+2Zt ψ0 + 1220Zτf0 (κ)dκ dτ.0При n ∈ N:сначала решаем однородное уравнение:T ”n (t) +(πna)2Tn (t) = 0.l2Его общее решение имеет вид:Tn (t) = c1 sinc Д.С.
Ткаченкоπnatπnat+ c2 cos.ll-5-(2.17)УМФ – семинар – К 5 – 7Метод вариации постоянной позволяет нам искать решение уравнения (2.16) в видеπnatπnat+ c2 (t) cos,где c1,2 (t) – есть решения системыll 0+ c02 (t) cos πnat= 0; c1 (t) sin πnatllTn (t) = c1 (t) sinπnalπnat0c01 (t) cos πnat−c(t)sin= fn (t).2llоткудаπnatlfn (t) cos,πnalС учётом начальных условий Tn (0) = ϕn ,c01 (t) =llc1 (t) =ψn +πnaπnaZtlπnatfn (t) sin.πnalTn0 (0) = ψn окончательно получаемc02 (t) = −πnaτfn (τ ) cosdτ,llc2 (t) = ϕn −πna0Ztfn (τ ) sinπnaτdτ.l(2.18)0Таким образом,Tn (t) = ϕn sinπnatlπnat+ ψncos+ll πnaZtZtπnatl πnatπnaτπnaτ sindτ − cosdτ . (2.19)+fn (τ ) cosfn (τ ) sinπnallll00Всё, что нам осталось сделать, – это подставить (2.17), (2.19) в формулуu(x, t) =∞XTn (t) cos πnx ln=0.3.
№ 654m. (Классический способ)Решить неоднородную начально-краевую задачу для уравнения колебаний с однороднымикраевыми условиями второго рода.utt − a2 uxx = f (x),u(0, t) = u(l, t) = 0,β−αu(x, 0) =x + α,lut (x, 0) = 0,x ∈ (0, l), t > 0,t > 0,(3.1)(3.2)x ∈ [0, l].(3.3)x ∈ [0, l].(3.4)(3.5)Шаг 1. Решение задачи Штурма–Лиувилля.Рассмотрим задачуX”(x) + λX(x) = 0,X(0) = X(l) = 0.(3.6)(3.7)Задача (3.6)–(3.7) есть задача Штурма–Лиувилля.
Её решение нам уже известно:λn =c Д.С. Ткаченко(πnx)2,l2Xn (x) = sin-6- πnx l,n ∈ N.УМФ – семинар – К 5 – 7Шаг 2. Будем искать решение уравнения utt − a2 uxx = f (x, t) с краевыми условиямиu(0, t) = u(l, t) = 0 в виде∞Pu(x, t) =Xn Tn (t), где функции Xn (x) имееют вид:n=1Xn (x) = sin πnx ln ∈ N.,(3.8)Пусть функция f (x) разложена в ряд Фурье по синусам (так как в данном примере f независит от t, то fn тут просто константы, не зависящие от t)f (x) =∞Xsin πnx n=1lfn .(3.9)При этом, коэффициенты данного ряда Фурье ищутся по формулам:2fn = (f, Xn ) =lZlf (x) sin πnx ldx.(3.10)0Тогда уравнение (3.1) приобретает вид∞Xn=1∞ πnx XXn (x)T ”n (t) − a X”n (x)Tn (t) =fn sin.ln=12Для его выполнения достаточно, чтобыXn (x)T ”n (t) − a2 X”n (x)Tn (t) = fn sin πnx для n ∈ N,lто есть πnx πnx (πna)2T(t)sin=fsinT ”n (t) +nnl2llдля n ∈ N.Это заведомо выполнено, еслиT ”n (t) +(πna)2Tn (t) = fnl2для n ∈ N,(3.11)Итак, мы получили условия на функции Tn (t), достаточные для того, чтобы функция∞Pu(x, t) =Tn (t) sin πnxбыла (если ряд – "хороший") решением уравненияln=0utt − a2 uxx = f (x, t) с краевыми условиями u(0, t) = u(l, t) = 0.Шаг 3.
Характеристики
Тип файла PDF
PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.
Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.