В.В. Киреев - Высокомолекулярные соединения (1113699), страница 43
Текст из файла (страница 43)
Разновидностью эмульсионной является упомянутая выше дисперсионная полимеризация, которая подобна осадительной полимеризации в растворе (мономер растворим в растворителе, а полимер — нет), с тем отличием, что образующиеся частицы полимера стабилизированы полимерным ПАВ и образуют дисперсию. Основными особенностями дисперсионной полимеризации в органических средах являются: ° образование дисперсии полимера на ранних стадиях; ° автоускорение на средних степенях превращения; ° более высокая скорость полимеризации в сравнении с полимеризацией в растворе при тех же концентрациях реагентов.
По указанным закономерностям дисперсионная полимеризация в органических средах подобна обычной эмульсионной полимеризации, хотя скорость процесса и не зависит ни от размера частиц, ни от их числа. Это вызвано тем, что уже при малых конверсиях полимеризация смещается в объем частиц, где вследствие высокой вязкости среды возможно существование более чем одного радикала. Следовательно, скорость обрыва уменьшается не за счет изоляции радикала в частице (как в обычной эмульсионной полимеризации), а вследствие обычного гель-эффекта, характерного для полимеризации в массе. Теория эмульсионной полимеризации Медведева. Основные предпосылки теории Смита — Эварта (постоянство числа частиц и наличие не более чем одного радикала в каждой частице) соблюдаются далеко не всегда, поэтому для многих реакций эмульсионной полимеризации наблюдаются отклонения от предсказанной указанной теорией зависимости скорости полимеризации от числа частиц и концентраций эмульгатора и инициатора (уравнения (3.70) и (3.73)).
Для многих мономеров, особенно полярных, число частиц при их эмульсионной полимеризации оказывается пропорционально аза Гаека 3. цепные пренеееы еарааепанпп макрпмепекрн концентрации эмульгатора [Э] в третьей степени (Ж- [Э1з), а скорость полимеризации пропорциональна концентрациям эмульгатора и инициатора в указанных ниже степенях: м - [Э[к~[1п[ц5. (3.76) Приведенные экспериментальные соотношения показывают, что в случае полярных мономеров, отличающихся более высокой растворимостью в воде и более высокой активностью образуемых ими радикалов, механизм эмульсионной полимеризации должен быть иным.
Академик С. С. Медведев предположил следующую схему эмульсионной полимеризации. 1. Вследствие высокой вязкости частицы радикалы не могут проникнуть в ее объем, а поэтому полимеризация идет в основном на поверхности. Это заключение подтверждается независимостью скорости полимеризации от числа частиц и ее линейной зависимостью от суммарной поверхности (приведенная выше кубическая зависимость М от концентрации эмульгатора как раз и является следствием этого). 2. После исчезновения в реакционной системе капель мономера скорость процесса остается постоянной; постоянная концентрация мономера в этом случае поддерживается не во всем объеме ПМЧ, а только в ее наружной оболочке. Примером этого является полимеризация винилацетата и акрилатов: свободные капли мономера исчезают при конверсии 20 — ЗОЖ, а постоянство скорости наблюдается до 70 — 807'-ной степени превращения.
3. Невозможность диффузии радикала в объем частицы может быть обусловлена высокой реакционной способностью радикала: он реагирует прежде, чем успевает проникнуть внутрь частицы. Аналогичное явление наблюдается в случае нерастворимости полимера в собственном мономере (эмульсионная полимеризация винилхлорида), а также при затравочной полимеризации мономера на заранее полученном латексе какого-то полимера, который нерастворим в полимеризуемом мономере. Частным случаем полимеризации в наружной оболочке слоя ПМЧ является протекание основной стадии роста цепи лишь в адсорбционном слое эмульгатора. Теории эмульсионной полимеризации Смита — Эварта и Медведева не исключают, а скорее дополняют друг друга.
Теория Смита — Эварта лучше согласуется с экспериментальными данными при полимеризации в эмульсии малополярных, слаборастворимых в воде мономеров, которые растворяют образующиеся из них полимеры, — в этом случае рост цепи идет во всем объеме частицы, включая ее поверхностные слои. При полимеризации Зд. Рааааальаая ааллиаряаааля 233 полярных мономеров при плохой растворимости или нерастворимости образующегося полимера в собственном мономере наблюдаемые закономерности более точно могут быть представлены в рамках теории Медведева. В общем случае эмульсионная полимеризация может протекать по промежуточному механизму с той или иной долей реакции роста цепи в объеме или на поверхности ПМЧ при наличии в них (в зависимости от размера ПМЧ и других факторов) различного количества радикалов.
Преобладание того или иного механизма в реальном процессе определяется природой и концентрацией мономера, эмульгатора, инициатора, а также условиями осуществления полимеризации. В настоящее время установлено, что зарождение полимерномономерных частиц, в которых протекает рост цепей, может происходить тремя возможными способами: мицеллярным, гомогенным или в результате квазиспонтанного эмульгирования.
Образование ПМЧ из мицелл эмульгатора рассмотрено выше. Однако при значительной растворимости мономера в воде инициирование и начало роста цепи могут начинаться в растворе; лишь при достижении некоторой степени полимеризации растущие макрорадикалы выпадают из раствора, образуя ПМЧ, в которых далее и протекает полимеризация. Такой тип нуклеации (образования ПМЧ) называют гомогенным. При полимеризации в присутствии эмульгатора, относительно хорошо растворимого в водной и мономерной фазах, диспергирование мономера возможно до размера частиц, соизмеримых с размером ПМЧ, образующихся обычным путем.
Полимеризация в таких стабилизированных микрокаплях (в микроэмульсии) идет без подпитки мономером во внешнем адсорбционном слое, толщина которого постепенно возрастает по мере расходования мономера из внутреннего объема микрокапли. Образование микро- эмульсий и протекание процесса в ее частицах как в дискретном объеме только за счет содержащегося в микрокаплях мономера было впервые обнаружено С. С.
Медведевым для эмульсионной полимеризации в присутствии неионогенных эмульгаторов. Этот тип формирования ПМЧ называют квазиснонтанным эмульгированием. Как следует из рассмотрения возможных вариантов образования ПМЧ, по-разному может осуществляться и поступление мономера в зону роста цепи — вследствие диффузии из капель в активные мицеллы (мицеллярная нуклеация), диффузией из водного раствора (гомогенная нуклеация) или поступления мономера в ПМЧ вообще может не быть (квазиспонтанное эмульги- рзе Глава 3. Целвые лроцеооы образования маяроиелеврл рование при полимеризации в микроэмульсии). В реальных системах указанные механизмы формирования ПМЧ могут реализовываться одновременно с большей или меньшей относительной долей.
Преобладание того или иного механизма формирования ПМЧ зависит от природы мономера и его растворимости в воде, природы эмульгатора и инициатора и температуры. Инициирование эмульсионной полимеризации при использовании водорастворимых инициаторов начинается с их распада в водной фазе и первичного взаимодействия инициирующих радикалов с мономером в этой же фазе: после нескольких актов присоединения растущий радикал становится более гидрофобным и проникает в мицеллу, где и продолжается рост цепи.
В случае маслорастворимых инициаторов оба процесса (распад и первичное взаимодействие с молекулой мономера) протекают в моно- мерной фазе ПМЧ. Тогда, исходя из предположения о наличии в ПМЧ не более одного радикала, необходимо предположить, что один из образовавшихся при распаде инициатора радикалов должен покинуть ПМЧ. Однако выше отмечено, что если размер ПМЧ большой (более 0,1 мкм), то в ней может находиться и более одного радикала.
В ряде случаев на разложение инициаторов существенное влияние оказывает эмульгатор. Рост цепи, независимо от типа нуклеации, осуществляется либо в объеме, либо в поверхностном слое ПМЧ. Рост цепи только в адсорбционном слое эмульгатора возможен лишь в редких случаях, например при сополимеризации двух мономеров, растворимых в различных фазах (стирол — малеиновый ангидрид): контакт сомономеров при этом возможен лишь в зоне адсорбции эмульгатора. Обрыв цепи в эмульсионной полимеризации независимо от характера формирования ПМЧ является бимолекулярным и происходит только при попадании в нее второго радикала, при этом вследствие высокой вязкости среды внутри активной мицеллы (в состоянии равновесия концентрация полимера в ней около 40%) константы скорости обрыва цепи невелики.
Например, при эмульсионной полиме~изации стирола значения л, находятся в пределах (3,6+4,4) 10 л/(моль с). Гель-эффект при эмульсионной полимеризации возможен только в частицах большого размера. В последнее время показано, что необходимо учитывать и возможность обрыва цепи путем взаимодействия растущих радикалов в водной фазе. Кинетики змульсионной полимеризации зависит от особенностей элементарных реакций, т.е. от конкретного типа эмульсионной системы. Однако для большинства таких систем кривая «кон- ЗЛ. Ралннальная нелннернаання 23$ 100 и 3, 80 а й 60 а с О 40 20 Рис. 3. т3. Кинетическая кривая эмульснониой полимеризации: 1 — участок ускорения; И -- участок постоянной скорости; 1П вЂ” замедление полимеризапии версия — время» состоит из трех участков (рис.
3.13), причем участок П в пределах 5 — 10аа50 — 70% характеризуется постоянством скорости. Независимо от типа нуклеации и места роста цепи в ПМЧ зависимость скорости полимеризации от концентрации эмульгатора и инициатора может быть представлена выражением типа (3.76): ти - [Э['[10[а, (3.77) где порядок реакции по эмульгатору и инициатору может меняться в пределах а = 0,1-:0,6, Ь = 0,4-:1,0. Так, при зарождении частиц по мицеллярному механизму в соответствии с теорией Смита — Эварта скорость полимеризации зависит от концентрации эмульгатора в степени 0,6 (см. уравнения (3.70) и (3.73)). В случае же гомогенной нуклеации порядок по эмульгатору близок к нулю, т.е.