Антидемидович 5 - ДУ (1113366), страница 56
Текст из файла (страница 56)
72 ао — — О, аз — — 1. Тогда из этой же системы 1 ! 3 аз=о, Следовательно И вЂ” хо)у +у!п(!+хо — !) = О, или (1 — хо)ух+у!п(1+хо) +у!и (/!в „1-. Подставляя в последнее уравнение разложения \ у(!) = Ь, + Ь,г+ Ьз('+ Ьзг' + 1+ хо „, п(1+ хо)" и приравнивая коэффициенты при одинаковых степенях 1, получаем: ь 2Ьзхо — Ьо!и(! + хо) .= Оз 2Ь2 — 6Ьзхо+ Ьэ 1п(1+ хо) — = Оз !+ хо ь, Ьо -12Ьохо + 6Ьз + Ьз 1п(1 + хо)— =О, 1 + хо 2(1 + хо) Пусть Ьо — — 1, Ьэ — — О. Тогда из полученной системы последовательно найдем 1п(1 + хо) 1 / 1п(1 + хо) 1 хонго, Ьз= — ( — х ~О, 2хо ' ' бхо ( хо !+хо/' 1 (Ьз(1 4 хо) 1 1пз(1+ хо) 1 Ь4— + х ФО, 12хо 1, 4 хо(! + хо) 2хо 2(! + хо)2) Пусть Ьо — — О, Ьэ — — 1.
Тогда из системы (1) получим: !и(! + хо) 1 /!и(1+*о) 1 ь=о, ь= хо за о, Ь4 х ~О. бхо !2хо (, хо 1+ хо/ Заметим, что из выражений для Ьг, ! = 1, 2, 3, 4, предельным переходом хо — +О мохсно получить значения соответствующих аг, 3' = 1, 2, 3, 4, вычисленных в случае хо = О. Таким образом, частные решения при хо > О можно записать тюс (в+ хо) 1п(1+ хо) (х+ хо) /1п(1+ хо) 1 у,(х) =1+ + ~+ хо бхо хо 1+ хо (х+хо) (йз(!+хо) 1 !и (!+хо) 1 + 2 + 2 12хо 1, хо хо(1+ хо) 2хо 2(1+ хо)') (х + хо) !п(1 + хо) (х + хо) /1п(1 + хо) 1 Уз(х) = х + хо + + )+....и хо 12хо '3 хо 1+ хо) 549.
у" — уо+ (х — 2)у'+ У = О. м поскольку ро(х) ы 1 зо О и функции рэ = рэ(х) = -х, рз = рз(х) = х — 2, рэ = рз(х) гв 1 явшются аналитическими при всех х Е (-со, +со), то фундаментальная система состоит из аналитических на всей числовой оси функций. Следовательно, соответствующие им степенные ряды 3 4 уз(х) = х+ — + — + 6 24 Радиус сходимости степенных рядов, представляющих у,(х), уз(х), равен единице. для полугения частных решений, пригодных 3/х Е (-со, !), сделаем замену х = ! — хо (хо > 0). Тогда данное уравнение примет внд 255 з« схоюпся при всех х. Подставляя в данное уравнение ряд 2' .а„х" и приравнивая коэффициенты «=0 при ха, х, х', ..., получаем: баз — 2а, + аа = О, (и+ 3)(п+ 2)а 43 — (и + 2)а +3 + а„= О, п = 1, 2, ....
Пуси ае — — 1, аз — — аз = О. Тогда из последних уравнений найдем: 1 ! 1 аз з а4=0 аЗ«« — аб«« 6' ' 30' 180' Следовательно х х х 3 уз(х) = ! — — — — + — + .... б 30 !80 Пусть ૠ— — а, = О, аз = 1. Тогда из указанных выше уравнений следует, что 1 1 1 а,=-, а«= — —, а,= —, 3' 12' 15' Поэтому второе частное решение имеет вид: хз х« уз(х) =х+ — — — + — + .... 3 12 15 Наконец, если положим ас = а, = О, а, = 1, то пслучнмз 1 ! аЗ Ю а4 з аг— 4 20' Следовательно, 3 .4 3 уз(х) = х + — — — — .... ь 4 20 у(х)=х ~ а„х.
«3Х Подставив ряд в данное уравнение и приравняв коэффициенты при *, х, ..., получим: о а«г(г + 1) = О, а,(г + 1)(г + 2) = О, а„ =— (1) (и+ г)(п+ г+ 1) Ясно, что нетривиальное решение возможно только при условии аа+азз ,-4 О. Пусть ૠ— — 1, аз — — О. 2 Тогда из псрвого уравнения (1) следует, что т(г + 1) = О.
Взяв г = О, из третьего уравнения (1) последовательно находим: 1 аз —- - —, аз=о, 2 3' ! 1 а4=, аз=о, аз=- —, 2-3 ° 4 5' 6! Следовательно 2,4 уз(х> =1 — — + — — . 3! 5! Далее, положив г = — 1 (аа — — 1, аз — — 0), из ( 1 а2 = — — а3 2' Поэтому второе частное решение имеет вид: а!и х — х из 0; 1) получаем: 1 =О а4«« —, 1 3' х' х 1 созх у,(х) = — ~1 — — + — — ...~ = —, х у О. х ) 2! 41,~ х В следующих задачах найти те решения данных уравнений, которые выражаются степенными (или обобщенными степенными) рзшами. 550.
ху«+ 2у'+ *у = О. 42 поскольку функция ре — — р«(х) = х имеет в точке х = 0 нуль 1-го порядка, фунюзия рз = р,(х) = 2 нулей не имеет, а функция р, = р,(х) = х имеет в этой точке нуль 1-го порядка, то, согласно п.2.1, сузцествует по крайней мере одно нетривиальное решение данного уравнения в виде суммы обобщенного степенного ряда Гл. 5. Приблвисевиые методы решении диффереинвальиык уравнений 256 Пусть а, = О, а, = 1, Тогда из второго уравнения (1) следует, что (т + 1)(г+2) = О. Полапш, например, г = -1, из третьего уравнения (1) последовательно находим: 1 1 аз=О, аз=- — се=О аз=— 2 3' ' 5!' Таким образом 1 / х х ! з1пх уз(х)= — ~х — — + — — ...1 =, х~О. 3! 5!,1 х Если же положим г = -2, то аналогично будем иметь у4(х)= — х — — + — — ...
= —, х зяб. хт ~, 2! 4! ) Итак, если х Ф О, то два линейно независимых частных решения представятся в виде: япх соя х у!(х) = —, ут(х) = —. м х х Примечание. Можно было бы обойтись рассмотрением случал ес = 1, а| = О. 551. 9хту" — (х' — 2)у = О. а Подставляя в уравнение ряд (1) (2) Таким образом, хт х4 5 6 5 6.!1.12 2 .4 6.7 6 7 !2.13 у!(х) = х! 1 уз(х) = х! 1 Примечаиие. Рассмотрение случал ее = О, а1 = 1 приводит к такому же резулылту. 552. х'уе+ 2ху' — (ха+ 2х+ 2)у = О. М Аналогично предыдущему примеру имеем: (г +г — 2)ае = О, г(г+3)а! 2ае = О ((и+ г)(п т г+ 1) — 2)а„— а„т — 2а„~ = О, и = 2, 3,.... (1) Посколькумы ищем нетривиальные решения, то аз+а, Ф О.
Следовательно, определитель первых 2 2 двух однородных уравнений должен быть равен нулю, т.е. (г — 1)г(г + 2)(г + 3) = О. Отсюда находим возможные варианты: г~ = 1, гт = О, гз = — 2, г4 = -3. у(х) = 2 а„х" я=с и приравнивая коэффициенты при одинаковых степенях х, получаем: а„(9(и+гКп+г — 1)+2) — а„, =О, и = 2, 3, ..., ае(9г' — 9г+ 2) = О, а~(9г + 9г+ 2) = О. Пусть ае — — 1, а~ = О. Тогда из первого уравнения (1) следует, что г, = у, гт = у. Подставив 1 2 в (2) сначала г = у, а затем г = у, для каждого из этих двух случаев найдем: 2 а, = —, аз' =О, аз 5 6' ' 5 6 11 12' 7~ аз ~ 4 6 7 Г2 Гу 257 Пусть г = 1, аа — — 1, тогда из указанных уравнений получаем аз — — 2, а из третьего уравнения (1) 1 последовательно находим 1 1 3 аз=-, аз= —, а4= —, 5' 20' 280 Соответстяенно зтому запишем первое частное решение: хз '4 Зхз у,(х)=х4 — + — + — + — + ....
2 5 20 280 Пусть г = -2, ас = 1, тогда аналогичным образом можем получить 1 2 а, = -1, 1 а,=-!, аз= — аз=О. 2' коэффициенты а4, аз и т. д, находим обычным способом. таким образом, второе частное решение запишется в виде: 1 1 '2 'з 7х4 У2(х) = — — — + — + — + — + — + ..., х 2 8 40 !20 Рассмотрение случаев г = 0 и г = -3 приводит к таким же результатам.
Ь 553. у" + у' — ху = о. ~ Подставив ряд 2.' а„хьм в уравнение и приравняв коэффициенты при одинаковых степе=о нях х, получим: ааг =О, аз(1+г) =О, а„= " 2, и=23," (и + г)2 пуси, г = О, тогда а, = О, а коэффициент ае можем приравзшть единице. из третьего соотношения последовательно находим: ! 1 4з аз — — О, а4 22 4'з Следовательно, хз .4 х %(*) — ' 22 + 22, 42 + 22, 42, б2 Найти общее решение уравнений: 554. х'у" + ху'+ (! — х)у = О.
< Частное решение ищем в виде ряда 2.' а„х"'". Подставив ряд в уравнение, получим таз=4 жлество по х, из которого известным способом находим: ае(г +1)=0, а„=, пЕМ 1+ (и + г)2 Поскольку ае И' 0 (при аа = 0 получается тривиальное решение), то нз первого уравнения следует, что г = х1. Пусть г = 4, аа — — 1, тогда из второго уравнения последовательно получаем: 1 1 1 1+ 24 ' 2 (1+ 24)(1+ 4) ' 12(1+ 24)(1+ 4)(З + 24) ' Поскольку при отыскании а, приходим к неопределенности б, то поступаем следующим образом.
0 Считая, что г ~ -2, из уравнений (1) находим: 2 г +Зг+4 4(г + 2) гз + Зг ' (гз + Зг)(з 2 + 5г + 4) ' (гз + Зг)(г + 5г + 4)(з' + 5) Озсюда, устремив г — -2, получим: 25В Гл. 5. Приближенные менщм решения двКмреипиальиых уравнеивй Таким образом, частные решения имеют внд: х > ! -~ 2в 4(! + 2в)(! + в) 12(1 + 2в)(1 + в)(3 + 2в) ув(х)=х 1+,+,, + +...~, х х' ув(х)=х' 1+ .+, + +... 1 — 2в' 4(1 — 2в)(1 — в) 12(1 — 2в)(1 — в)(3 — 2в) Общее же решение у = Свув(х) + Свув(х) = С,(и 4- ви) Х Сз(и — ви) = аи + Ьи тле а = С, + Св, Ь = !(С, — Сз). Функшвн и, и легко получить из представления у,(х), если воспользоваться йюрмулами Эйлера. Имеем: х, х в — 31 з у,(х) = и(х) + ви(х) = евьв 1+ — (1 — 2в) — — (1+ Зв) + — ! в' — — 1 + ... 5 40 520 г 2/ х х Зх ( 2х Зхз х -1-""'"-"')("---'- — ' -( — --' -' ))= 5 40 1040 [, 5 40 520 Зхз /л 3' — !+ — — — — — + ...)соз(1пх)+ ~ — + — — — + ...