Антидемидович 5 - ДУ (1113366), страница 34
Текст из файла (страница 34)
Следовательно, а = 2чгЬ. Далее, пусть а > 2г/Ь. Тогда задача имеет решение аг ы=)г — — Ь. -1/4 уг = (-Лге"*+ Лге *) — е (2) Наконец, если О < а < 2ъгЬ, то / а а' Уг —— (Х вЂ” э!пыгх+соэыгх) е г, ы, = г((Ь вЂ” —. 'х2ыг \( 4 (3) Осгается сравнить решения (1), (2), (3) при досгаточно больших х > О.
Пусть х — ь +со. Тогда для решений (!), (2), (3) соответственно имеем аснмптотические формулы Уг =0(хе * ), У, =0(еы гь*), Уг — — 0(е г ), (4) Так как !но ., = Вш хе *( гг =О нри а<2ьгЬ, то хе '~-ь О быстрее, чем е г . Далее, всилутого, что -*,Гь 1!ш -, = !ап хе *(~~~" г) = 0 при а > 2гГЬ, ( ь), е Рьье. гб то хе *~ -ь 0 также быстрее, чем е( г)*. Таким образом, из (4) следует, что решение (1), полученное при а = 2ьгЬ, стремится к нулю при х -ь +оо быстрее ссыльных решений.
М 341. Найти периодическое решение уравнения у+х+4х = е' ' и на комплексной плоскости С начертить кривую, которую пробегает амплитудный множитель этого решения при изменении ьи от Ода+со. и Заметим, что обозначения х, х используются в механике и имеют смысл первой и второй производной по времени. Поскольку характеристическое уравнение Л +Л+4 = О имеет корни Л, г = — 2хг-2-, то срез дн решений однородного уравнения нет периодического решения, отличного от тождественного нуля. Далее, так как гьь и' — х г, то частное решение ищем в виде х = Ае~'.
Имеем: ьа и=в 4+ йи — мг 1 А= — — —, 4+ йи — ыг' Отделяя действительную и мнимую части, лля множителя А получаем выражение А= А~+!Аз, 4 — гиг г,=,г,= — .~ц= .ь« (4 — и ) 4 и (4-и ) +ьь (4 мг)гп г ' Исследуя обычным способом функции Аг, А, и !А~ на экстремум, находим: Аг —— Т при 1 гиг = гГ2 и А, ь — — — ч при ыг = гг'6; Агы„щ -0,5 при ыз = !! — к — щ 1,94; (А(„щ 0,51 при ы = г/Зь5. Вычисляя еще Аг(ыг) щ -0,23, Аг(гиг) щ -0,22, А,(ьиг) - 0,1, 1!щ А, = Т, йп А, = О, +О и +ьь 1пп Аг = О, Пщ Аг — — О, полУчаем необходимые данные дла постРоениЯ эскиза гРафика кРивой и +ь и + на пльюкостн С (рис, 26), м. 150 Гл. 2.
Длв(гферевциальиме уравнения ааюпик иарилиов 342. дано уравнение ун+ау'+Ьу = у(х), причем (у(х)) < гп ( — со < х < оо), а корни харак- теристического уравнения удовлетворяют неравенству Лл < Л, < О. Найти решение, ограниченное при -оо < х < +со. Показать, что: а) все остальные решения при х — +оо неограниченно приближаются к этому решению; б) если У периодическая функция, то решение также периодическое. «Исходя из общего решения однородного уравнения у = С, е '* + Сле '* и применяя метод вариации произвольных постоянных С, и Сл, для общего решения неоднород- ного уравнения получим выражение ел'* л,* у = С1е '*+ Слеп*+ — 3 (х)е '* да — — у(х)е л* ах.
(1) л — л л,— л Так как несобственные интегралы / ((в)е ' дз, / Г'(з)е ' дз Х -и сходятсл абсолютно в силу оценки / ~У(з)е ""~ дз < пл / е "" дз, то решение (1) можно записать более компактно: л лг лн о Далее, поскольку справедливо неравенство Г елп еллл ~ +г л|л елл гп гл .«.-/" Л~ — Лл Л| — Лл ЛлЛл Ь о о то пз (2) следует, что частное решение данного уравнения, ограниченное при х Е (-сс, +оо), имеет вид л,л л,л у = / У(х — 1) — дт. (3) Л,— Л о Ясно, что С,ели + С,ем* -л О при х — +оо, позтому из (2) вытекает, что все решения стремятся к частному решению (3) при х — +оо.
Наконец, полагая в (3) х+ Т вместо х, где Т вЂ” период функции Г", получаем чы е' — е лл ллл г е — е ллл у(х+т)= ~у(Х+т-1) Ф= / У(х — 1) Ж = у(а). Л,— Л, Л,— Лл 0 О Следовательно, функция у также Т-периодическая. М % 4. Линейные дифференциальные уравнения с переменными коэффициентами 4.1. Лввейвое дифференциальное уравнение тз-го порядка с верввеивыии иозффвцнеитвмв. Линейно звиисимые Щувицив.
Определитель Вроиеипго. Пинейным ди44еренашмьным ураннением и -го нарядна с неременнымн коз44иннентамн называется уравнение вида ат(х)у'ю+ ал(х)ум "+ .. + а„,(х)у'+ а„(х)у = 4(х), б4. Лииейяые лиффереишщльиые ууаввешш с перемеииымв казффицвевтамв 151 где Эи, а; (1 = 6, х) — известные функции.
Если у,(х) — частное решение уравнения (1) при р и О, то посредспюм замены у = вгз(х), «'(х) = и(х) порядок уравнения (1) при з» н О можно понизить. Функции у; (1 = 1, и) нпываотся линейно эасасимыми на сепаенте [а, Ь], если существуют такие постоянные сп (1 = 1, и), одновременно не равные нулю, что на [а, ь] выполняется тождество а,у(+а)У)+ ... + а»У» Ы О. (2) Если тождество (2) справедливо лишь при а, = аз = ...
= аи = О, то укаэанные Функции называются лилейла лезависимими на сегменте [а, Ь]. Определитель У( Уз У У) Уз Ув (3) )г(х) = )У(ун Уз~ " 1У») = М-1) ( -О (»-1) У) Уз " У» называется алределителем Врсяскага. 4.2. Критерий ляиейцой везависвмости функций. если (и — 1) раэ ш(фференцирусмыс Функции У1, уз, ..., У» линейно зависимы на сегменте (а, Ь], то Щх) ш О на [а, Ь].
Если линейно независимые функции у„у„..., у» являются решениями линейного спнорспного уравнения У +Р)(х)у + ''' +1»(х)у (4) где Р; (3 = 1, и) непрерывные на сегменте [а, ь] функции, то )и'(х) та О на [а, ь]. л Общее решение уравнения (4) при х Е [а, Ы есть линейная комбинация у = г., "С;у;(х) ли(=1 пейна независимых частных решений у; этого уравнения.
4.3. Фуидамевтальвяя система решений. Совокупность и линейно независимых частных решений линейного однородного уравнения п-го порядка называется его фулдамевгвалы(ой сисмемой. Фунцаментальная сисгема решений вполне определяет линейное однородное уравнение (4). Такое уравнение имеет виа У) Уз " У у У) Уз Ул У (5) (в-1) (и-1) (и-1) (л-О у) Уз . У» У (») (в) (») (в) 4.4. Формула Остроградского — Лиувилля. Если в (3) у(, уз, ..., У» — фундаментальная система решений уравнения (4), то двя опрелеаителя Вронского справедлива е)орм)иа Оаироградского — Виуаилля »1 1= » 1»1 и)(-'1'»ииа), *и где хв Е [а, Ь], х Е [а, Ь].
4.5. Общее решение неоднородного линейного двффереицивлыюго уравнения с переменными козффицвеигвмя. Если известно общее решение однородного уравнения, то общее решение неоднородного пмвнения с непрерывной на [а, Ы правой частью можно найти, применяя метод вариации произвольных постоянных (см.
б 3). 152 Гл. 2. Двйиуереиивальиые ураввенвя высших порадков Р (! — х )у — ау+и у=О называется уравнением гуеймгиева. Заменив аргумент х по формуле х = созг, получим уравнение д'у — +ау=О. д( 4.7. Дифференциальные уравнения второго иорвдка. Среди уравнений высших порядков, часто встречающихся в приложениях, важное место занимают диукйеренциальные уравнения ваорого порядка ун + Р,(х)у' + Рз(х)у = О, (7) где Р, и Р, — непрерывные на (а, Ь) функции. С помощью замены 1 у = ехр ( — — / Р,(х) дх) Я(х) 2./ его можно привести к каноническому виду 42 — + д(х)х = О, (8) дх2 где 1, 1 Х(х) = Рз(х) — — Р1'(х) — — Р, (х). 2 4 При этом считакн, что Р, Е С'(а, Ь).
Функция Х называется инвариангпои уравнения (7). Любое уравнение второго порядка Ря(х)у" + Р,(х)у'-> Р,(х)у = 0 (9) с непрерывными на (а, Ь) коэффициентами можно привести к так называемой самосопрязкенной дорис д 7 ду~ — (Р(х) — ) + а(х)у = О д 7' путем почленного умножения уравнения (9) на функцию о, где 4.8. Связь между линейным дифференциальным уравнением второго ворцмга в уравнением Эйлера — Ривжати. Если в (7) положим у' = ук(х), то получим уравнение Эйлера — Риккати 2 — = -х — Р,(х)х — Рз(х).
дх Обратно, уравнение Эйлера — Риккати у = Р(х) + (г(х)у + В(х)у (10) (12) с помощью замены и ий(х) можно привести к линейному уравнению второго порядка. 4.6. Уравнение Эйлера. Ураввевве Чебышева. Дифференциальное уравнение вида (ах+Ь)"у'ю+а,(ах+Ь)" 'уы в+ ... +а„,(ах+Ь)у'+а„у=О называется урапнением Эйлера. С помощью замены ах+ Ь = хе его можно привести к уравнению с постоянными коэффициентами. При а = 1, Ь = 0 уравнение Эйлера переходит в уравнение х"уио+ а~х" ~ум и+ ... + а„~ху'+ а„у = О, которое также называют уравнением Эйлера.
У авнение 9 4. Линейные днфферевшмльвме ураввенна с перемеввьавн коэфймниевтамн 153 4.9. Сведение линейного двфферевшшльпого уравнения второго порядка с переменными коэффиииеитами к уравнению с постоявиымв коэффвциеатами. Иногла уравнение (7) сводится к уравнению с постоянными коэффициентами. Если такое сведение возможно, то только с цомошью замены ( = а ( у/Рг(х) г(х| (14) где 1 — новый аргумент. 4.10.