Главная » Просмотр файлов » Антидемидович 5 - ДУ

Антидемидович 5 - ДУ (1113366), страница 15

Файл №1113366 Антидемидович 5 - ДУ (Антидемидович) 15 страницаАнтидемидович 5 - ДУ (1113366) страница 152019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 15)

(хт+гх+у)ах — (. — З ту)ау=О. м Проводим последовательно преобразования: (х +2х)ах+(уах — хау)+Зх уау=о; (1+ — ) ах — а(-)+ — ау =О (хФО); 2 х) тх) 2 а(х+) * — — +-у) =о. д 2 ) Интегрируя, находим х+йтх — — +-у =С. у 3 х 2 Присоединим еще "потерянное" решение х = О. и 143. уах — хай = 2х'гй хан. м Разлепив обе части уравнения на хт и произведя замену к = н, получаем уравнение х ан = 2хсйнах, 2 етпч где С вЂ” новая постовннвв.

Теперь легко видеть, что решение у = О содержится в последней формуле общего решения прн С = О. Гл. 1. Дифг(гереицаалыгые уравнения первого порядка 60 которое легко интегрируется. Имеем о(а!п и) Г = 2г! хйх+)пС, откуда !а(п -~ = Се*. )ь апи х~ 144. Уг г!х+ (е* — у) г(у = О. М Замены е' = и и и = зд приводят к уравнениям д /и г — г(и + !1- — 1г! г(у = 0; д г(г + г бд = О. н у Последнее уравнение имеет общий интеграл 1п(у! — Уе *=С; У=О. > $45.

ядах =(уз Охгд ! хг),(д м Проведем сггедующие преобразования уравнения: уйх — хг(у у х(улх — хг(д) =у(х +у )г!у; = — г(у; хг+ уг х -г! (агой -~ = — г(у. ут у Положим у = хо. Тогда оп -г((агсгри) = оду, и(1+ и') Интегрируя, получаем окончательно: г и =(!+о)се ", илн У е" .г.! г =С.ы 146. х'у(убх+хбд) =2убх+хг(у. ° Действуем аналогично проделанному в предыдугцем примере. Имеем г г((ху) г(х (х у — 1)г((ху) = дг!х; (х у — 1) ху х Положим ху = и. Тогда получим г(н г(х / 1) г(и Ых (хо — !) — = —, или н х х о хг Пусть — — = с, тогда 1 ди (и+ с) — — г(с = О, или иг(в+ сг(и — иг(и = О. и г(о /с ~ с — - г( ~ - ( = О, !и !о! — — = сопа1. о и Окончательно имеем х у)п Сед = -1. > г 147.

(х' — у'+ у) г(х+ х(2У вЂ” 1) г(у = О. м Образуем уравнение для интегрирующего множителя д = д(ы) г ( г г г)ы г(д (2ху — х) — — (х — у + у) — ) — = ( — 4У + 2)д. дх дд оы Легко видеть, что оно допускает множитель вила )г = д(х): х(2У вЂ” 1) — = 2(-2У+ 1)рб х)г + 2Д = О.

йд г г(х Разггелим обе части уравнсггия на ог и проинтегрируем полученное уравнение: $5. Ураююввя в полных дифференииалах. Иитюунрующвй множитель б1 Интетрируя, получаем д = х . Умножив обе части уравнения на,и, получаем уравнение в полных дифференциалах < у' у ) у2у 1 — — + — дх+ < — — — ! 4у = О. хз хт) <,х х/ Его общий интеграл имеет вид х +у' — у=Сх.> 14а. (2*У+у) х+(*'у .),Ь =О. ю Из уравнении для интегрируюшето множителя ( ды з ды'! др х(х у — 1) — — (2х у+ 1)у — ) — = (х у+ 2)р дх ду/ д видно, что оно допускает множитель вида д = д(ы), где ы = ху; 2 2 ~р 3 ху(х у — 1 — 2х у — 1) — = (х у+ 2)р, или ыд'+ д = О. Из послелнего уравнения находим д = ы ' = (ху) '.

разделив обе части исходного уравнения на ху (х зь О, у Ф О), получим уравнение в полных дифференциалах (2ху+ — ) ох+ (х' — -) ду=О, проинтегрировав которое, находим: х'(! -ь у) ь ( Н = С. Очевидно, что уравнение имеет также тривиапыпяе решения х = О, у = О. и 149. у(х+ у') да + х'(у — 1) ду = О. ° Применим метод разбиения падве части. Для этого рассмотрим два уравнения ху д* - х'ду = О, у' дх Ч- х'у ду = О.

Легко убедиться в том, что дпя первого уравнения р, = — т — и общий интеграл и,(х, у): — . = С,, = — х= ху а лля второго дз — — -з-т, из(х, у) = +„— — Сн Согласно методу разбиения на дае части, ху интезрируюцщй множитель д дпя исходного уравнения удовлетворяет соотношению у!(е) 2 Ч2(яхту)' Пусть рз(х) = х~. Тогда 1 х хт 1 з(е'(хну) = ( Следовательно, 1 1 ! и д(х,у)=— 2 х'у (1+ х) у(х+ у)' Умножив обе части исходного уравнения на д(х, у), получим уравнение в полных дифференциалах 4 д =0 4х+ (х+ у)' у(х+ у)' Гл.

1. Диффереицвалыаое ураваеааа иервого аорядяа Выберем в формуле (3), и. 5.1, хо — — О, уо = 1. Получим общий интеграл в воще ф(х, у)=~' —,В=С, г !+у х(у — 1) +(п~ — ~~=С. (1+у)з ' х+у о Уравнение имеет также тривиальные решения х = 0 н у = О, которые вюцочаем в общий интеграл соответсвенно при С = 0 н С = со. Ь 150. (х' — мп'у) Ох+ хмп2уду = О. м Саставнв дифференциальное уравнение для интегрирующего множителя ( дм,, дыд др хяп2у — — (х — ап у) — ) — = -2ап2у р, (1) дх ду) Ь внлнм, что оно допускает множитель вяла р = р(х). Тогда нз (1) следует, что хр'+ 2,я = О, откуда р = х . Разделив исходное уравнение на хз (х ~ 0) н проинтегрировав полученное, имеем 1 з о мп2!ОГ+ / ЛГ = сапа, хо ЗО О, хз оо нлн, окончательно 5!и у+х =Си.

Решение х = 0 включаем сюда прн С = са. а 151. х«ну+2! х- 1)йу=2уйх. а Из днфференцнальнаго уравнения для ннтегрнрующега множителя ( дм дмт др -х«ну+ 21пх — 1) — — 2у — ) — = р(3+ 1пу+ 2!пх) дх ду) ом следует, что оно допускает ог = 1п х + 2 !и у. Действительно, в ятом случае р'+ р = О, откуда 1 р=е хуз Разделив исходное уравнение на хуз (х ~ О, у и' 0), получнм уравнение в полных днфференцнвих 2 1 — ох — — «пу+ 2йгх — 1)Ну = О.

ху уз Общий интеграл уравнения имеет внд 2 Г й! г!и! — 1 !пх у Ф(х, у) = — 1 — — ) о! = сапог, нлн — = С, а у) г ) !з у 1 ! 152. (х + 1)(2хдх+ сазуду) = 2хзшуйх. а Полагая хо+ ! = и, и!ну = е, приводим уравнение к виду (и — е)йи+ аде = О, которое прн и Ф 0 можно записать тшс Ои иле — ейи г' е 'т — + = О, т.е. г((!пи+ -) = О. и .) Имеем )пи+ — „= сапа!. Следовательно, (х' + 1) )п(х + 1) + ап у = С(хз + 1). > $5. Уравнения в ивяных двфферевцввлах.

Ивтезувруюивзй мвожвтель 63 153. х'у'+ у+ (х'у'- х)у' = о. м Из уравнения для интегрирующего множителя ( з з Аы з з Оы'з г(/з (х у — х) — — (х у +у) — ) — = 2)з ах ду) з(ззз усматривается возможность выбора и = ху. Тогда будем иметь аз)з'+ р = О, опгуда 1 1 гз = ы ху Умножив исходное уравнение на р(х, у), получим уравнение в полных дифференциалах: (ху + -) ух+ (х у- -) з(у= О. Его общий интеграл имеет аил 3 у з„а Ф(х,у)= ~!+ — ! м+/(х! — -)гм=сопаг, или — е*" =с, л Решение у= 0 следует из общего интеграла при С = О, И 154.

(х' - у) ох+ х(у+ 1) йу = о. м Применяем метод разбиения уравнения на два; х Вх+хуз(у=о и хз(у — удх=о. Первое уравнение имеет интегрирующий множитель )з, = — и общий интеграл в,(х, у) = х + 1 3 + у = С„а второе уравнение — рз — — — г, из(х, у) ш х = Сз. Согласно указанному методу, 3 ! интегрирующий множитель лля исходного уравнения имеет вид )з= р (х +у) = узз® (1) где Рз, хз — произвольные дифференцируемые функции. Из (1) следует, что хрз з х + у з = 2 зз = узз®. Положим узз(х) = -„-~-. Тогда получим 1 хрз(х'+у)=, = = ( >О). з/аз+у г ( )3 Следовательно, (зз(а) = — г — -.

Таким образом, )з(х, у) = (х > О). Умножив исход- 1 згг+ аз" хз з.уз нос уравнение на р(х, у), получим уравнение а полных дифференциалах х' — у у+1 з(х+ Оу= О. аз/хз+ у-' тгхт+ ут Его общий интеграл имеет вид у+ т/хт + уг /;тз.зз х з/из+аз у+ з/х'+ у' Частное решение х = 0 получаем при С = О. Непосредственно можно убедиться, что множитель Гз(х, у) пригпаен и для х < О. м 155. у'(убх - 2х Оу) = *'(х оу - 2у Ох).

< Аналопзчно предыдущему напишем уравиениа у (узза — 2хз(у) =О и х~(хз(у — 2уз(х) = О. 64 Гл, 1, Дифференциальные уравнения первого порядка г р= —.„з р ®= —,„рг®, из которого следует, что Полагаем у' = хи. Тогда ! 375(и) = — г узг(.* — и) (х > О, и > 0). замечаем, что правая часть последнего равенства будет функцией только от и, если взять 572(а) = = аэ .

Таким образом, 2 ! 4 7 177(и) = чги = узх з, р(х, у) = х зу з Умножив обе части исходного уравнения на р(х, у), получим уравнение в полных дифференци- алах ( ) 4 2 5 55 У ! ! 5 15 зуз+2хзу з) 4(х — (2х зу э+азу з) 4(У=О, Взяв в последней формуле п. 5.1 хб — — 1, уе — — 1, патучим общий интеграл уравнения 7 4 15 г 7 ! ! б 75 Ф(х, У) = / (1 3 + 21 з ) 4(1 — / ( 2х э( з + х з 1 1) 4(1 = сопи, ! ! ! 5 а!уз или = С.

хз 4У2 хз 4уг С з77ху4 Частные решения х = О, у = 0 получаем при С = О. в. 15б. (бх — 2У вЂ” 2уг)4(х+ (5у' — 8ху — х)4(у = О. М Для отыскания интегрирующего множителя воспользуемся методом разделения уравнения на два: (бх — 2у) 4(х — х 4(у = 0; (5У' — 8ху) 4(у — 2у' 4(х = О. Нетрудно установить, что нптегрируюзцие множители этих уравнений, а также их интегралы имеют вид: Р! — -х, )42 — — У; и,щ2х — х У=С!, игщ2Ух — У =Сг.

2 3 2 4 5 Согласно указанному методу, интегрирующий множитель данного уравнения ищем из сооюзоше- ння р = х(57(2х — х у) = у (гг(2У х — у ). Отсюда 2 узз(2х — х у) = — )72(2узх — у ). 3 2 У 4 5 Полагая здесь уг = их, получаем У5 б х! (2уг — — ) = ирг(2~- — УУ), или б 5 узз(а) = иузг(и~а), где а = — — —, из и2' Пусть рг(2) = (х > 0). Тогда 1 1 1 рг(и а) = — = — (и > 0), 3/иаа изГа Тогда Р, = — т, и, = = СП Рг = -з-, иг ев — = Сг — соответственно интегРиРУющие ! у, 1 х *у х у множители и интегралы этих уравнений.

Характеристики

Тип файла
DJVU-файл
Размер
3,39 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее