Главная » Просмотр файлов » Антидемидович 5 - ДУ

Антидемидович 5 - ДУ (1113366), страница 11

Файл №1113366 Антидемидович 5 - ДУ (Антидемидович) 11 страницаАнтидемидович 5 - ДУ (1113366) страница 112019-04-28СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 11)

Ливейвме уравнения и урааиеиия, ирввавмвиеся к вим 39 Согласно условию, имеем у(1+ Д1) — у(1) у(1,) =й —, (1) х(1 + Лг) — (О (1,) ' где й — коэффициент пропорциональности, 1, б (1, 1+ «зг). Если функции х и у днфференцируемы, то из (!) предельным переходом при Ьг — 0 получаем дифференциальное уравнение йу у — =й-, йх х проинтегрировав которое, находим требуемую зависимость у =Сх~. в ф 4.

Линейные уравнения и уравнения, приводящиеся к ним 4.1. Линейное уравнение первого порядка. Уравнение вида — +Р(х)у=()( ) йу йх (1) называется линейныи уравнением нерво«а нарядна. Наиболее употребительным способом его решения является ме«над вариации произвольной наса«алиной. Сущность метода состоит в следующем. Сначала ищется решение однородного уравнения, соответствующего уравнению (1): — +Р(х)у = О. йу (2) йх Затем в общем решении уравнения (2) произвольную постоянную С считают некоторой диффереицнруемой функцией от х; С = С(х). Эту функцию находят из дифференциального уравнения с разделяющимися переменными, которое получается в результате подстановки общего решения уравнения (2) в уравнение (1).

4.2. Обмен ролмин между функцией н аргументом. Некоторые уравнения становятся линейными, если в них поменять ролями функцию и аргумент. 4.3. Уравнения, приводимые к линейным. К линейным уравнениям приводятся также уравнения вида: у (у) — + Р(х)й(у) = «3(х), йу йх — + Р(х) = «2(х)е"", йу йх — + Р(х)у = 1)(х)у (уравнение Бернулли). Полагая в О) У(у) = х(х), получаем У'(у)у' = з'(х) и х'+ Р(х)х = «2(х).

(3) (4) (5) 85. Лве вилкас«и х и у полвергают дистиллированию. Известно„что в любой момент времени этого процесса отношение количеств жидкостей, которые превращаютса в пар, пропорционально отношению количеств, которые находятся еше в жидком состоянии. Определить зависимосп между х и у. < Пусть х(1) и у(1) — количество жидкостей, не превращенных в пар в момент времени 1. Тогда х(1+ й«1) и у(1 + «ь() — колнчесша жидкостей, не превращенных в пар в момент времени 1+ Ы. Следовательно, за время Ж в пар превратились следующие количества жидкостей: х(П вЂ” (1+51) и у(1) — у(1+«ьг).

Гл. 1. Диффереициашиые уравиеиюо первого порядка В уравнении (4) целесообразно провести замену е "" = г(х). Тогда получим л -пе ""у' = з', — — +Р(х)г = Я(х) (и ~ О). и Уравнение Бернулли приволится к!шлейному с помощью замены г(х) = у' (т оо О, т и 1, так как в этих случаях оно уже линейное). 4.4. Уравнение Миидннга — Дарбу. ураоаевие Миядияга — Дауду М(х, у) да+)У(х, у)ду+ 22(х, У)(хдУ вЂ” Удх) = О, где М и )т' — однородные функции степени т, а  — однородная функция степени и, посредством замены у = пх(и) приводится сначала к уравнению Бернулли, а последнее — уже известным способом к линейному. Решить уравнения.

86. у'+ узах = зесх. М Сыачала находим все решения однородного уравнения, соответствующего данному: у +у!ах=О. Переменные разлезиются, и после интегрирования находим у = Ссозх. Формула (1) представляет общее решение однородного уравнения, где С вЂ” произвольны постоянная. Для получения всех решений данного уравнения считаем С = С(х) и требуем, чтобы функция у = С(х)созх удовлетворяла ему, т.е.

С созх — Свих+Серах!ах = зесх, или С = — т —. Отсюда находим С(х) = гб х + Со, где Со — новая произвольны постоянная. ! Подставив значение С(х) в (1), окончательно получим у = з!пи+ Сосозх. > Примечание. В дальнейшем лдя новой аролпводьной постоянной буделл исаодьзооать старое обозначение С. Тадич образом, в рассмотренном примере у = о!их + Ссоох ость общее решение, а С— постоянная.

87. (2х + 1) у' = 4х + 2у. < Решаем соответствующее однородное уравнение (2х + 1)у' = 2у. Его общее решение имеет вид у = С(2х+ 1). Прнмеошм метод ыриации произвольной постоянной. Имеем (С'(2х+ 1)+ 2С)(2х+ 1) = 4х+ 2С(2х+ 1), или (2х + 1)тС' = 4х. Отсюда находим г хда 1 С(х) = 4 / l (2х+ !)' + Со = $п|2х+ Ц+ — +Со. 2х+ 1 Таким образом, окончательно получаем у = (2х+ 1)(1п(2х+ Ц+ С)+ 1. ь 88. (ау+ е')дх — хну = О.

< Считая л(х ~ О (х = Π— тривиааьное решение), записываем уравнение в виде ху' — ху = е*. 41 й 4. Линейные уравнения и ураввеввя, прваодяивмея к иим Соответствующее однородное уравнение ху' — хд = О имеет общее решение у = Се*. Далее применяем метод вариации произвольной постоянной. Имеем х(С+ С')е* — хСе* = е*, откуда С' = —, С = 1п ф + Се. Получаем все решения неоднородного уравнения: 1 у = с'(1п 1х(+ С); х = О.

М (1) 89. (х+у')пу = упх, М(1, П. < Уравнение не вюшется линейным относительно переменной у, однако оно линейгюе относительно х. Поэтому целесообразно считать х функиией у. Считая 4у ~ О (у = Π— тривиальное решение), имеем 4х х+д =у 4д' Соответствующее однородное уравнение х = у2 — имеет общее решение * = Су. Применив кх д метод вариации произвольной постоянной, получим последовательно Сд+у = у(СуфС), Сь=), С= у+С.

Следовательно, все ретиения данного уравнения описываются формулами * = Су+ у'; у = О. > (1) 2 Замечание. Перспнсав первую формулу а (1) а виде р = — СУ- н положив С = со, пояучнм решенно д = О. Таким образом, если допустить, по постоянная С может прнннмать сингулярное значение, то решенне у = О можно не ямпнсмеать отдельно. Полагая а (!) х = 1, у = 1, накопим С = О. Тогда нз (1) получим частное решение х = у . т 90. (2е" — х)у' = 1. дй ! < Предложенное уравнение линейное относительно х. Так как з- — — -~-, то его можно ет записать в виде 2е" — х = х'. Общим решением однородною уравнения х'+ х = О явдяется функция а=Се ".

(2) Считая С = С(у) и подставив (2) в уравнение (1), !!слупим последовательно 2ез — Се "= С'е "— Се ", С' = 2ез", С(у) = е "+ Се. Окончательно имеем х = Сс " + е". )ь 91. (я(п'у+хсгбу)у'=1. < Уравнение линейное относительно переменной х, поэтому представляем в его в виде х — хсгбу=ип у. Применив метод париации произвольной постоянной, получим х(д) = С(у)ипу, где С(у) = — сову+сопи. > 14у / 92 — — + (2 — х)1пу = х'(е ~.1-е т ) у 4х И Это уравнение вила (3), п.

4.3, поэтому применяем замену 1п у = л(х). Имеем — — — х + (2 — х)л = х~с + е т у1. у йх' 42 Гл. 1. Дифференциальные уравнения нервно порядка Полученное уравнение линейное относительно «. Пользуясь мепщом вариации произвольной постоянной, получаем » г / »2 «(х) =С(х)е'У, где С(х) = ~ х~ е Т+е ) г(х+Сз. Таким образом, общее решение исходного уравнения имеет вид )и у и е з ~ — ~х — - ! е — е т + С) . М *— '-з» г'1 1 2» Ы 93.

" — У + ф+ ! = х' у»ут+ 1 а'х < это также уравнение вида (3), п.4.3, следовательно, произведем замену «(х) = ч'уз + 1. Тогда получим ! «~=, «+«=х +1. гу»+ ! Проделав всю необходимую процедуру, требуемую в методе вариации произвольной постоянной, найдем: « = С(х)е *, где С(х) = е* (х — 2х+ 3) + Сз. Итак уз+1 = хт — 2х+ 3+ Се * Р— общее решение исхолного уравнения. М , г(у 94.е* У вЂ” е"=е". ох ° Умножив обе часты рассматриваемого уравнения на е*, получим уравнение вида (4), и.4.3« йу ††. ох Следовательно, применяем замену «(х) = е ".

Тогда получим последовательно — » Р »» г » «(х) = -е "у(х), -е"« — 1 =е е", — « — « = е . Полученное уравнение линейно относгпельио «. Его решение имеет вид: 1 « =Се * — — е*. 2 Осталось записать общее решение исходного уравнения: 1 е "=Се» вЂ” — е~.м 2 95. 3 ау + (1+ е*+'») йх = б. и Преобразовав уравнение к виду йу 3 — +! = -е*.е г(х замечаем, что оно относится к виду (4), п.4.3. Поэтому воспользуемся заменой «(х) = е з". Тогда последовательно получим » «(х)»» — Зе з"у', — — +1=- —, «' — «=с*. « «' Общее решение линейного уравнения находим известным способом, в результате чего имеем «(х) = Се*+ хе*.

Осталось запиазть общее решение исходного уравнения: 1 х у= — -1п(С+х) — —. м 3 3 $4. Лввейвме уравнения в уравнения, врваадяагвеев к ввм 43 96 "У+ ф~ ~з у з(х 3(х + 1) ° Уравнение относится к виду (3), п.4.3, поскольку Следовательно, произведя замену з(х) = 3 Дйу)г, получим линейное уравнение 2 з х+ — =1, х+1 общее решение которого имеет вид: 1 С з = — (я+1)+ х+1 Окончательно общий интеграл запишется в виде С р((лу)з (.+ Ц+ > 3 2 я+1 97. (х+ ц(у'+ у') = — у. 1 Считая, что х ~ -1, делим обе части уравнения на х+ 1 и записываем его в виде з У 2 у+ = у. х+1 Это есть уравнение Бернулли. Разделив абе его части на уз, затем производим замену у ' = з(х).

Характеристики

Тип файла
DJVU-файл
Размер
3,39 Mb
Тип материала
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6376
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее