Главная » Просмотр файлов » Е.Е. Тыртышников - Матричный анализ и линейная алгебра

Е.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313), страница 47

Файл №1112313 Е.Е. Тыртышников - Матричный анализ и линейная алгебра (Е.Е. Тыртышников - Матричный анализ и линейная алгебра) 47 страницаЕ.Е. Тыртышников - Матричный анализ и линейная алгебра (1112313) страница 472019-04-25СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 47)

Òàêèì îáðàçîì, èìååò ìåñòîÒåîðåìà. Äëÿ ëþáîé âåùåñòâåííîé íîðìàëüíîé ìàòðèöû ñóùåñòâóåò âåùåñòâåííûéîðòîíîðìèðîâàííûé áàçèñ, â êîòîðîì îíà ÿâëÿåòñÿ ïðÿìîéñóììîéâåùåñòâåííûõhia báëîêîâ ïîðÿäêà 1 è âåùåñòâåííûõ áëîêîâ ïîðÿäêà 2 âèäà −b a .33.9Áëî÷íî äèàãîíàëüíàÿ ôîðìà îðòîãîíàëüíîé ìàòðèöûÑîáñòâåííûå çíà÷åíèÿ îðòîãîíàëüíîé ìàòðèöû ïî ìîäóëþ ðàâíû 1. Ïîýòîìó àíàëîãæîðäàíîâîé ôîðìû â äàííîì ñëó÷àå ïðåäñòàâëÿåò ñîáîé ïðÿìóþ ñóììó áëîêîâ ïîðÿäêà 1, îòâå÷àþùèõ âåùåñòâåííûì ñîáñòâåííûì çíà÷åíèÿì, ðàâíûì 1 èëè −1, è áëîêîâïîðÿäêà 2, îòâå÷àþùèõ ïàðàì êîìïëåêñíî ñîïðÿæåííûõ ñîáñòâåííûõ çíà÷åíèé λ = a+ibè λ = a − ib, b 6= 0.

Çàìåòèì, ÷òî a2 + b2 = 1 ⇒ ñîãëàñíî (∗), êàæäûé áëîê ïîðÿäêà 2â äàííîì ñëó÷àå åñòü âåùåñòâåííàÿ ìàòðèöà âðàùåíèÿ.Òåîðåìà. Äëÿ ëþáîé îðòîãîíàëüíîé ìàòðèöû ñóùåñòâóåò âåùåñòâåííûé îðòîíîðìèðîâàííûé áàçèñ, â êîòîðîì îíà ÿâëÿåòñÿ ïðîèçâåäåíèåì âåùåñòâåííûõ ìàòðèö îò-222Ëåêöèÿ 33ðàæåíèÿ è âåùåñòâåííûõ ìàòðèö âðàùåíèÿ.Äîêàçàòåëüñòâî. Èç ñêàçàííîãî âûøå ÿñíî, ÷òî â íåêîòîðîì îðòîíîðìèðîâàííîì áà-çèñå ïîëó÷àåòñÿ áëî÷íî äèàãîíàëüíàÿ ìàòðèöà ñ âåùåñòâåííûìè áëîêàìè ïîðÿäêà 1 äëÿñîáñòâåííûõ çíà÷åíèé ±1 è áëîêàìè ïîðÿäêà 2, êîòîðûå îêàçûâàþòñÿ âåùåñòâåííûìèìàòðèöàìè âðàùåíèÿ.

Äîñòàòî÷íî çàìåòèòü, ÷òîM1 M1 I IM2I..=.MkM2...II......I... 2.MkÒåîðåìó ìîæíî ïðîèíòåðïðåòèðîâàòü òàêèì îáðàçîì: ëèíåéíîå îòîáðàæåíèå â Rn ,ñîõðàíÿþùåå äëèíû, ñâîäèòñÿ ê êîìïîçèöèè îòðàæåíèé è âðàùåíèé.Çàäà÷à.Äîêàæèòå, ÷òî ëþáàÿ âåùåñòâåííàÿ ìàòðèöà âðàùåíèÿ ÿâëÿåòñÿ ïðîèçâåäåíèåì äâóõâåùåñòâåííûõ ìàòðèö îòðàæåíèÿ.Ëåêöèÿ 3434.1Ìàòðèöà ÔóðüåÈñêëþ÷èòåëüíî âàæíûé êëàññ óíèòàðíûõ ìàòðèö â ìàòåìàòèêå è ïðèëîæåíèÿõ ýòîñïåöèàëüíûå ìàòðèöû Âàíäåðìîíäà, ïîñòðîåííûå íà êîðíÿõ èç åäèíèöû. Ïóñòü2πε = cos −n2π+ i sin −n.Ýòî ïåðâîîáðàçíûé êîðåíü èç åäèíèöû ñòåïåíè n.

1 Ìàòðèöà Âàíäåðìîíäà äëÿ ÷èñåë ε0 , ε1 , . . . , εn−1 íàçûâàåòñÿ òàêæå ìàòðèöåé (ïðÿìîãî) äèñêðåòíîãî ïðåîáðàçîâàíèÿÔóðüå, èëè, êîðî÷å, ìàòðèöåé Ôóðüå ïîðÿäêà n. Îáîçíà÷åíèå:Fn= 1111·11εε1·2.........(n−2)·1(n−2)·21 εε(n−1)·11 εε(n−1)·2...11·(n−1)...ε......(n−2)·(n−1)... ε. .

. ε(n−1)·(n−1).Óòâåðæäåíèå. Ìàòðèöà Ôóðüå îáðàòèìà è ïðè ýòîì îáðàòíàÿ ìàòðèöà èìååò âèä1 ∗F .n nFn−1 =Äîêàçàòåëüñòâî. Ýëåìåíòû ïðîèçâåäåíèÿ ìàòðèö Fn∗ Fn ëåãêî âû÷èñëÿþòñÿ êàê ñóììû ÷ëåíîâ ãåîìåòðè÷åñêîé ïðîãðåññèè:(Fn∗ Fn )ij=n−1Xki kjε̄ ε=k=0n−1Xεk(j−i)k=0Òàêèì îáðàçîì, Fn∗ Fn = n I .=n−1XÇàäà÷à.Íàéòè ìàêñèìàëüíîå çíà÷åíèå ôóíêöèèñ ýëåìåíòàìè=ε(j−i)n −1εj−i −1n,= 0, i 6= j,i = j.2Äîêàçàòü, ÷òîAk=0Çàäà÷à.ìàòðèöε(j−i) kFn4 = n2 I .f (A) = | det A|íà ìíîæåñòâå âñåõ êîìïëåêñíûõ|aij | ≤ 1.1 Ìèíóñ äàíü ñëîæèâøåéñÿ òðàäèöèè îïðåäåëåíèÿ ïðÿìîãî è îáðàòíîãî ïðåîáðàçîâàíèé Ôóðüå:ìèíóñ äëÿ ïðÿìîãî, ïëþñ äëÿ îáðàòíîãî.22322434.2Ëåêöèÿ 34Öèðêóëÿíòíûå ìàòðèöûÊðàñèâûé è ïîëåçíûé êëàññ íîðìàëüíûõ ìàòðèö ìàòðèöû âèäàA=a0a1a2...an−2an−1an−1a0a1...an−3an−2an−2an−1a0...an−4an−3..................a2a3a4...a0a1a1a2a3...an−1a0.Ìàòðèöà A íàçûâàåòñÿ öèðêóëÿíòíîé ìàòðèöåé èëè öèðêóëÿíòîì.

 ÷àñòíîñòè, ïðèn = 4 ïîëó÷àåì" a a a a #A=0321a1a2a3a0a1a2a3a0a1a2a3a0.Êàê âèäèì, öèðêóëÿíòíàÿ ìàòðèöà ïîëíîñòüþ îïðåäåëÿåòñÿ ýëåìåíòàìè ëþáîé ñâîåéñòðîêè èëè ëþáîãî ñòîëáöà. Åå ïåðâûé ñòîëáåö åñòü a = [a0 , a1 , . . . , an−1 ]> .×òîáû íàéòè ñîáñòâåííûå çíà÷åíèÿ è ñîáñòâåííûå âåêòîðû ìàòðèöû A, âîçüìåìïðîèçâîëüíûé êîðåíü ξ ñòåïåíè n èç åäèíèöû (ξ n = 1) è ðàññìîòðèì ÷èñëîλ = λ(ξ) ≡ a0 + ξa1 + .

. . + ξ n−1 an−1 .Ïîñëåäîâàòåëüíî óìíîæàÿ îáå ÷àñòè íà 1, ξ, ξ 2 , . . . , ξ n−1 , íàõîäèìλ·1λ·ξλ · ξ2λ · ξ n−1Ñëåäîâàòåëüíî,===...=a0+ ξ a1an−1 + ξ a0an−2 + ξ an−1+ . . . + ξ n−1 an−1 ,+ . . . + ξ n−1 an−2 ,+ . . . + ξ n−1 an−3 ,a1+ . . . + ξ n−1 a0 .+ ξ a2λ(ξ) [1, ξ, . . . , ξ n−1 ] = [1, ξ, . . . , ξ n−1 ]A.(∗)Âûáåðåì ε = cos(−2π/n) + i sin(−2π/n).

Ðàâåíñòâî (∗) ñïðàâåäëèâî ïðè ξ =1, ε, ε2 , . . . , εn−1 è, ñëåäîâàòåëüíî, äàåò ñèñòåìó ðàâåíñòâ, êîòîðàÿ â ìàòðè÷íîé çàïèñèèìååò âèäΛFn = Fn A,ãäå Fn ìàòðèöà Ôóðüå ïîðÿäêà n, Λ äèàãîíàëüíàÿ ìàòðèöà âèäàλ(1)λ(ε)Λ=..,.λ(εn−1 )Èòàê, AFn∗ = Fn∗ Λ ⇒ ñòîëáöû ìàòðèöû Fn∗ ñóòü ñîáñòâåííûå âåêòîðû ìàòðèöûA, îòâå÷àþùèå ñîáñòâåííûì çíà÷åíèÿì, ðàñïîëîæåííûì íà äèàãîíàëè ìàòðèöû Λ. Çàìåòèì, ÷òî Fn∗ ïîëó÷àåòñÿ èç Fn ïåðåñòàíîâêîé ñòîëáöîâ: ïåðâûé ñòîëáåö îñòàåòñÿ íàìåñòå, à ñòîëáöû ñî âòîðîãî ïî ïîñëåäíèé ñòàâÿòñÿ â îáðàòíîì ïîðÿäêå. Ïîýòîìó ìîæíîóòâåðæäàòü, ÷òî áàçèñîì èç ñîáñòâåííûõ âåêòîðîâ öèðêóëÿíòíîé ìàòðèöû A ÿâëÿþòñÿñòîëáöû ìàòðèöû Ôóðüå Fn .

Ïîëó÷åííûå ðåçóëüòàòû ñôîðìóëèðóåì â âèäå òåîðåìû.Òåîðåìà î öèðêóëÿíòàõ. Ïóñòü A öèðêóëÿíòíàÿ ìàòðèöà ñ ïåðâûì ñòîëáöîìa = [a0 , . . . , an−1 ]> . ÒîãäàA=1 ∗F ΛFn ,n n(#)Å. Å. Òûðòûøíèêîâ225ãäå Fn ìàòðèöà Ôóðüå ïîðÿäêà n è Λ äèàãîíàëüíàÿ ìàòðèöà ñîáñòâåííûõ çíà÷åíèé âèäà"λ# 1λ1a0..Λ=, . . .

= Fn . . . ..λnλnan−1Íåñëîæíî ïðîâåðèòü, ÷òî äëÿ ëþáûõ λ1 , . . . , λn ìàòðèöà â ïðàâîé ÷àñòè (#) ÿâëÿåòñÿ öèðêóëÿíòíîé ìàòðèöåé. Îòñþäà ÿñíî, ÷òî ïðîèçâåäåíèå öèðêóëÿíòíûõ ìàòðèöîñòàåòñÿ öèðêóëÿíòíîé ìàòðèöåé.Ìàòðèöà, îáðàòíàÿ ê íåâûðîæäåííîé öèðêóëÿíòíîé ìàòðèöå, òàêæå ÿâëÿåòñÿ öèðêóëÿíòíîé.34.3Àëãåáðû ìàòðèöËþáàÿ ëèíåéíàÿ êîìáèíàöèÿ öèðêóëÿíòîâ åñòü öèðêóëÿíò.

Òàêèì îáðàçîì, ìíîæåñòâî öèðêóëÿíòîâ ïîðÿäêà n ÿâëÿåòñÿ n-ìåðíûì ëèíåéíûì ïðîñòðàíñòâîì, íà êîòîðîìîïðåäåëåíà îïåðàöèÿ óìíîæåíèÿ ýëåìåíòîâ, êîòîðàÿ âìåñòå ñ îïåðàöèåé ñëîæåíèÿ ïðåâðàùàåò äàííîå ëèíåéíîå ïðîñòðàíñòâî â êîëüöî.Ïóñòü â ëèíåéíîì ïðîñòðàíñòâå V îïðåäåëåíà îïåðàöèÿ óìíîæåíèÿ ýëåìåíòîâ, êîòîðàÿ äåëàåò åãî òàêæå êîëüöîì ñ åäèíèöåé, è ïóñòü óìíîæåíèå ïðîèçâîëüíûõ ýëåìåíòîâa è b è óìíîæåíèå íà ÷èñëî α ñâÿçàíû àêñèîìîé α(ab) = (αa)b = a(αb).

 òàêèõ ñëó÷àÿõïðîñòðàíñòâî V íàçûâàåòñÿ àëãåáðîé.Çàìåòèì, ÷òî óìíîæåíèå öèðêóëÿíòîâ êîììóòàòèâíî ïîýòîìó îíè äàþò ïðèìåðêîììóòàòèâíîé àëãåáðû ìàòðèö. Âñå ìíîæåñòâî ìàòðèö ôèêñèðîâàííîãî ïîðÿäêà n ïðèìåð íåêîììóòàòèâíîé àëãåáðû.Òåîðåìà. Ïóñòü M àëãåáðà ìàòðèö è A ∈ M íåâûðîæäåííàÿ ìàòðèöà. ÒîãäàA−1 ∈ M.Äîêàçàòåëüñòâî. Ïóñòü A ∈ M. Ïî òåîðåìå ÃàìèëüòîíàÊýëè, A àííóëèðóåòñÿ ñâîèìõàðàêòåðèñòè÷åñêèì ìíîãî÷ëåíîì: a0 I + a1 A + . . . + an−1 An−1 + An = 0. Åñëè A íåâûðîæäåííàÿ ìàòðèöà, òî, óìíîæàÿ îáå ÷àñòè íà A−1 è ó÷èòûâàÿ, ÷òî a0 = (−1)n det A 6= 0,ïîëó÷àåì1a1 I + a2 A + . . .

an−1 An−2 + An−1 ∈ M.2A−1 = −a0Ïî àíàëîãèè ñ öèðêóëÿíòàìè, ìîæíî ïîñòðîèòü ìíîãî äðóãèõ êîììóòàòèâíûõ ìàòðè÷íûõ àëãåáð.Óòâåðæäåíèå. Äëÿ ëþáîé ôèêñèðîâàííîé íåâûðîæäåííîé ìàòðèöû Q ∈ Cn×n âñåìàòðèöû âèäà QΛQ−1 , ãäå Λ ïðîèçâîëüíàÿ äèàãîíàëüíàÿ ìàòðèöà ïîðÿäêà n, îáðàçóþò êîììóòàòèâíóþ àëãåáðó.Äîêàçàòåëüñòâî. Óêàçàííîå ìíîæåñòâî ìàòðèö îáîçíà÷èì ÷åðåç M. Åñëè A1 , A2 ∈ M,òî A1 = QΛ1 Q−1 , A2 = QΛ2 Q−1 äëÿ êàêèõ-òî äèàãîíàëüíûõ ìàòðèö Λ1 è Λ2 . ÒîãäàαA1 + βA2 = Q(Λ1 + Λ2 )Q−1 ∈ M è A1 A2 = Q(Λ1 Λ2 )Q−1 ∈ M. 2Çàìå÷àíèå. Äàííîå óòâåðæäåíèå îïèñûâàåò íå âñå âîçìîæíûå êîììóòàòèâíûå àëãåá-226Ëåêöèÿ 34ðû ìàòðèö. Íàïðèìåð, ïóñòü M ñîñòîèò èç âñåõ n × n-ìàòðèö âèäàA=a0a1a2...an−2an−1a0a1...an−3an−2a0......an−3...a1...a0a1.(∗)a0Íåñëîæíî ïðîâåðèòü, ÷òî M ÿâëÿåòñÿ êîììóòàòèâíîé àëãåáðîé, íî â M èìåþòñÿíåäèàãîíàëèçóåìûå ìàòðèöû (äîêàæèòå!). Åùå îäèí ïðèìåð êîììóòàòèâíîé àëãåáðû ìíîæåñòâî ìàòðèö A òàêèõ, ÷òî A> ∈ M.Çàäà÷à.Äàíà æîðäàíîâà êëåòêàêîììóòèðóþùèõ ñ34.4J>Jïîðÿäêàn.Äîêàæèòå, ÷òî ìíîæåñòâî âñåõ, ñîâïàäàåò ñ ìíîæåñòâîì ìàòðèö âèäàn × n-ìàòðèö,(∗).Îäíîâðåìåííîå ïðèâåäåíèå ê òðåóãîëüíîìó âèäóÒåîðåìà.

Äëÿ ïðîèçâîëüíîé êîììóòàòèâíîé àëãåáðû ìàòðèö M ñóùåñòâóåò îáðàòèìàÿ ìàòðèöà Q òàêàÿ, ÷òî äëÿ ëþáîé A ∈ M ìàòðèöà Q−1 AQ ÿâëÿåòñÿ âåðõíåéòðåóãîëüíîé.Äîêàçàòåëüñòâî. Ïóñòü ìàòðèöû A1 , . . . , Ak ∈ M ⊂ Cn×n îáðàçóþò áàçèñ â ëèíåéíîìïðîñòðàíñòâå M. Äîêàæåì, ÷òî îíè èìåþò îáùèé ñîáñòâåííûé âåêòîð.Îáîçíà÷èì ÷åðåç L ñîáñòâåííîå ïîäïðîñòðàíñòâî ìàòðèöû A1 äëÿ ñîáñòâåííîãî çíà÷åíèÿ λ1 . Ïóñòü A1 x = λ1 x, x 6= 0. ÒîãäàA1 (A2 x) = A2 (A1 x) = λ1 (A2 x).(∗)Ñëåäîâàòåëüíî, A2 x ∈ L. Áîëåå òîãî, Al2 x ∈ L äëÿ âñåõ l = 1, 2, ... .

Ïóñòü M ìèíèìàëüíîå ïîäïðîñòðàíñòâî, ñîäåðæàùåå âñå âåêòîðû âèäà Al2 x. Î÷åâèäíî, ýòî ìèíèìàëüíîå ïîäïðîñòðàíñòâî, èíâàðèàíòíîå îòíîñèòåëüíî A2 è ñîäåðæàùåå x.  ñèëó (∗)çàêëþ÷àåì, ÷òî M ⊂ L.  M îáÿçàòåëüíî èìååòcÿ ñîáñòâåííûé âåêòîð äëÿ A2 , îí æåáóäåò ñîáñòâåííûì âåêòîðîì è äëÿ A1 .Äàëåå ïî èíäóêöèè. Ïóñòü L ñîäåðæàùåå x 6= 0 ïåðåñå÷åíèå ñîáñòâåííûõ ïîäïðîñòðàíñòâ L1 , . . . , Lk , îòâå÷àþùèõ ñîîòâåòñòâåííî ìàòðèöàì A1 , .

. . , Ak−1 , à M ñîäåðæàùåå x ìèíèìàëüíîå ïîäïðîñòðàíñòâî, èíâàðèàíòíîå îòíîñèòåëüíî Ak (î÷åâèäíî, îíî ñîñòîèò èç âåêòîðîâ âèäà p(Ak )x äëÿ âñåâîçìîæíûõ ìíîãî÷ëåíîâ p). Ëåãêî ïðîâåðèòü, ÷òî M ÿâëÿåòñÿ (íåíóëåâûì!) ïîäïðîñòðàíñòâîì äëÿ êàæäîãî èç ñîáñòâåííûõïîäïðîñòðàíñòâ L1 , . . . , Lk . Ïîýòîìó M ⊂ L, à ñîäåðæàùèéñÿ â M ñîáñòâåííûé âåêòîðäëÿ Ak ÿâëÿåòñÿ ñîáñòâåííûì âåêòîðîì òàêæå äëÿ A1 , . . . , Ak−1 .Èòàê, ïóñòü x îáùèé ñîáñòâåííûé âåêòîð äëÿ A1 , .

Характеристики

Тип файла
PDF-файл
Размер
1,77 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6375
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее