Я.И. Френкель - Кинетическая теория жидкостей (1108150), страница 104
Текст из файла (страница 104)
К соответствия с этим оно может быть рассчтггапо с помощью формулы (21)ь) предыдущтжо параграфа. !1олагая з=-1000 и х>=10 ", что соответствует что'текулярной;кидкостн при комнатной температуре, мы получим -'=10 ' т"ьь Эта цифра хорошо соглагуетсн с экспериментальными даяпымн 61. Г«Птьрттфельда для каучука при комнатных температурах. При тель>те)ьььту)ьт' — 60оС -.' становятся порядка 1 сок. и каучук утрачивает прнсуттту'о : бой Свойство Растворов и ввыокомолекуляряых вео)осев ' ему высокоэластичяостьц хорошо известно, что восле погружения в жид::кий воздух он становится хрупким, как стекло.
«Структурное время релаксации» ".', определяющее скорость, с которОй цепные макромолекулы стремятся восстановить свою нормальную слгручепную конфигурацию, или, точнее, нормальное (гауссовское) расПределение их эффективных длин, не следует путать с максвелловскмм временелг релаксации х, определяющим коэффициент вязкости га для обычного необратимого течения в соответствии с формулой та ==6) -.. .При обычных условиях (комнатной температуре) ° ») -.', что следует из огромной, практически неизмеримой, вязкости каучука.
Его текучесть становится заметной лишь при повышенных температурах; следует, однако, иметь в виду, что при высоких температурах каучук дол)кен практи'чееки нолностью деполимеризоваться, так что нельзя рассчитывать на установление простого соотношения между вязкостью ха н температурой. Исследуя длинноцепные парафины с относительно малыми значениями х, : Флори экспериментально показал,е' что зависимость ), (равной та) от T ' выражается обычной формулой к' х) =Ае»г, где энергия активации Иг не зависит от з, тогда как множитель А возрастает с з зкснопенциально, по формуле Аое .
(25) Последний результат, согласно Эйрпнгу и Кауцлга)гну,»» объясняется тем обстоятельством, что длинные молекулярные цепочки перемещаются пе как одно целое, а, так сказать, «частями», причем в каждом парциаль '-пом перемен)енин участвует ограниченное число звеньев. Этот процесс мг)я)по сравнить с перемещением гусеницы. При такил условиях энергия активации должна быть пропорциональна числу звешее, участвующих -'в элементарном перемещении з„и не должна зависеть от з, если х '- зи ' Полагая $4'.—:-гхз„где 1)' — энергия активации для простых углеводородов (например, метана или этапа), Эйрнпг получает для г) значения по' рядка 6 -8. Экспоне)щиальная зависимость множителя А от числа звеньев з, .найденная на опыте 1$)лори, не получает объяснения в схеме Эйриш.а.
Опа может быть объяснена на основании соображений, которые была рассмотрены нами выше при исследовании вопроса о завис)пюсти вязкости $жство$)а л)ая$)оыолекул В Обыкновенной )надю)стн От ко"'х!ее)т$)ацнн оп а' в) $). 7. Р $ о г у, 3. А)лег. СЛега.
Яос., 62, 1097, 1940. в» Н. Е у г ) а д, 1Ч. К а а х ш » а а, $. Аа)ег. СЛеи). Бос., 62, 3113, 1940. ч!',' Далее, согласно формуле ($1а) для стержневидных частиц с г ) 1(>е, имеем (2 ) в Т= 2)а,, тогда как результаты Флери могут быль представлены эмпирической формулой Т= — 4 Несоответствие этой формулы теоретической формуле (25а) может быть обусловлено частичным скручиванием лшлекулярных цепочек.
Применяя зту теорию к случаю каучука и других высоконолимеров, необходимо припять во внимание уменыление степени полимеризации з с повышением температуры. Полагая з е»г где з„— $, а (7 -- энергия полнмеризации, мы получил) в предыдущей формуле сложную зависимость типа найденной на опыте Уотертоноч ( $Ъ а1еггоп). С точки зрения строгой термодинамической теории каучукоподобное состояние полимерного вещества пе всегда является стабильным. $5 соответствии с соображениями, изложенными в 1 8 гл. 1П, его следовало бы назвать «отяосптельно стабильным», тогда как абсолютно стабильное состояние соответствует в том же температурном интервале абсолютному минимуму свободной энергии, будучи либо жидким состоянием со сравнительно простой молекулярнои структурой„либо кристаллнческпм.
$. Мехаиические и гермодикамические свойства каучукокододиь)х ве в в '«09 макромолекул. Согласно Формуле Эйнштейна, увеличение кшп$е,тр, :.' 4':„'-':,'; ции на г(я увеличивает вязкость на величину (т) = тмТРг(п гДе гм — значение 4 пРи и — --О. Этот результат относится лишь к случаю очень малых концентр„, й Обобщение его на случай высоких концентраций растворенного веществ может быть получено наиболее простым и естественным образом путем замены х)о в правок части последней Формулы на х)ч Если при:)том т и )р не зависят от я, то путем интегрирования получаемого уравнения находим )о Замечан, что Р представляет собой объем одной макромолекулы, а п — число их в единице объема, получаем х —...
т ет. )о Свойства раствор«в и вьксквиовекрикрьых веществ Мехаки«вские и термвзикаки«вские свойства кариркскоавбких веществ эП Рассмотрим, например, поведение серы. При нагревании до температуры, превосходящей 150'С, опа вревращается из прозрачной жидкости . с низкой вязкостгао в коричневую жидкость с очень высокой вязкостью.
Это превращение объясняется следующим образом. В кристаллическом плн расвлавленпом состоянии при темвературе ппже 150'С мтгле: кулы серы состоят из 8 атомов, образующих замкнутый восьмнугольпвл (точнее, два квадрата, один из которых расположен на вершине другого 'и повернут по отношению к нему на угол 45"). Выше 150 С этп восьмнугольники размыкаются и превращаются в открытые цепи с двумя свободными валентпостями па концах. За счет этих свободных валентпостой ' .такие цепочки полимеризуются, образуя цепи, состоягдие из очень большого числа последовательно связанных атомов (г .8г,, где г, — порядка 10 — 100 — 10СЮ). Эта полимеризацня приводит к огромному росту вязкости. Коли такую жидкость быстро охладит«в она не восстанавливает сво»о исходную структуру !если только пе выдерживается достаточно дол~о вблизи точки превращения (150'С) (, но остается в полимеризоваяпом Состоянии и становится при достаточном охлаждении (до комнатной температуры и даже ниже) каучуконодобпой.
Это объясняется тем„что восстановление исходной кольцевой структурь» молекул серы, являющееся 'необходимой предпосылкой для ее превращения в обычную (текучуто) .' жидкость или кристалл, требует разрыва полимерных цепочек, т. е. сопряжено с большой энергией активации П и в соответствии с этим про, исходит с относительно малой скоростью. При понижении температуры ст~ псяь полимеризации г и вязкость т, возрастак»т, так что переотлаждеп ная полимерная сера становится подлинно каучуководобным телом, если только температура не слишком мала и структурное время релаксации -' ',' 'не становится порядка секунд или минут; при этом высокая эластичность исчезает, так же как в замороженной резине.
Изложенная концепция, которая, бесспорно, верна применительно к каучукополобпому состоянию серы, мон<ет быть неприложима к таким высокополимерпым вегдествам (включая и обычный каучук), которые ' могут кристаллизоваться без фундаментальной перестройки молекул. просто за счет выпрямления и параллельной уваковки молекулярных ' цепочек. Реальная длина последних ве имеет для кристаллической струьтуры никакого значения, так как элементарная ячейка содержит. как 'правило, лишь пенного (по меньшей мере две) мономерпых групв. тот,ы иек концевые звенья каждой цени остаются в своего рода «сингулярном» (не полностью упорядоченном) положении. Эта точка зрения основывается не только па данных рентгепографического анализа кристаллизованного каучука, яо также на том факте, что характерная кристаллическая структура частично достигается, когда обычно аморфный каучук растягивается , на 200 --300«то.
Такая частичная кристаллизация в результате расти;ьеппя может быть объяснена с молекулярно-кинетической точки зрения возик кающим более или менее параллельным распопов.епием молекулярных цепей, облегчающим дальнейшее увеличение регулярности за счет споя- таиной пеРеУпаковкп, обУсловленпой тепловым движением. Ппа моа;ет быть объяснена также с термодинамической точки зрения ьак реву.тьтат повышения температуры кристаллизации за счет врило;кения растягшжющей силы, в согласии с уравнением йТ Т»Ь (26) где ЛЬ -- изменение длины, обусловленное кристаллизацией ври заданном значении растягивающей силы, а р,» — результиру»ощая скрытая теплота. Это уравнение получается так же, как уравнение Елаузиуса— Клапейрона, если удельные термодинамические вотенциалы р, 0 "1, 2) рассматриваются как функции Т и Р и одновременно принимается во впи- ~;;.'," Манне соотношение Л»=-=д~р,(д»т, вытекакпцес из выражения Рс!1.
лля работы. выполняемой системой вря растяжении внешней силой»т (прини,',::, 'маемой положительной в случае именно растяжения) ва величину дТ,. '":.. Соответствующее изменение свободной энергии Ч" дается равенством с(Ч»=-ГИ или в общем случае формулой вчр —.-= г'пБ — ЗйТ, где К вЂ” энтропия; овределяя термодинамический потенциал Ф =»р — еГ, мы.
таким образом, получим дф = — ЕлУ* — Бс(Т, ''-! откуда Л= — дФРдг. Равновесие между аморфной н кристаллической фазами определяется условием Р,(Т, Р)=;в(Т, Р.), ;:::, откуда непосредственным дифференцированием получается (26), поскольку ;. ст)==Т-'»Б. При рассмотрении перехода от кристаллической к аморфной „':.фазе с» положительно. Этот переход (плавление) при постоянном значе,:"'- нии»т соответствует уменьшению длины (ЛЛ (О), так что Л'ЫТ ) 0 Уравнение (26) еще ве было проверено количественно, так как подоб;:--'::ная проверка требует очекь точного измерения как Л»ю так и (». Проне .;:,;'-; того, следует иметь в виду, что каучук не является строго гомогспяым ;"'.