Диссертация (1097582), страница 31
Текст из файла (страница 31)
Ширина слоя H варьировалась от 20 до 160. После проведения линейнойаппроксимации были получены следующие зависимости:Совпадение зависимостей NVT моделирования при L=20 и L=40 говорит оботсутствии эффекта конечного масштаба по L, как и следует из теоретическогорассмотрения. Все три зависимости дают совпадающие в пределах ошибок значениядавления при 1/H стремящемся к 0, однако зависимость давления от размеров системы вслучае µ|NVT моделирования выражена слабее.Аналогичные зависимости были получены для случая φ=0.2 и соответствующемхимическом потенциале µ= -76.5:Для того, чтобы понять отличие в зависимостях для NVT и µ|NVT моделирований,рассмотрим подробнее природу возникновения эффекта конечного размера.Как уже обсуждалось выше, МОП дает значение нормальной составляющейдавления в системе, заключенной между стенками. Тангенциальная составляющаядавления зависит от расстояния до стенок и только вдали от них является константой., тоесть вдали от стенок, где система является изотропной:Таким образом, вдали от стенок (в объеме), так же как и в случае отсутствиястенок, давление зависит только от объемной доли полимера в системе и температуры:π=π(φ,T).
Все эффекты конечного размера возникают из-за зависимости плотности в134объеме от расстояния между стенками и/или величины пристеночного потенциала,φb=φb(H,λ).В случае проведения моделирования с использованием большого каноническогоансамбля с химическим потенциалом µ*, отвечающим концентрации φ* в случаемоделирования в системе с периодическими граничными условиями, при λ=1 в системе состенками концентрация полимера в объеме (то есть в центре ячейки моделирования)будет также равна φ*, φb(µ*,T)=φ*.
Это видно на профилях концентрации полимера междустенками (здесь не приведены). Таким образом, подавляется эффект зависимостиконцентрации полимера в объеме от размера системы в отсутствие потенциалавзаимодействия со стенкой (случай λ=1).Моделирование с использованием µ|NVT метода проводилось при µ=-40.4, котороеотвечает в случае наличия периодических граничных условий значению объемной долиполимера в системе φ=0.5, и µ=-76.5 (φ=0.2).
Значения концентрации в центре ячейки всистеме со стенками при λ=1 совпадают со значениями концентрации в системе спериодическими граничными условиями. Однако введение потенциала отталкивания приизмерении давления, которое осуществляется в NVT ансамбле, приводит к ростуконцентрации полимера в объеме (в середине ячейки), что приводит к погрешности привычислении давления с использованием МОП. Как видно из рисунка 50 отклонениезначения концентрации в объеме при введении потенциала отталкивания зависит отрасстояния между стенками.Рис.50. Зависимость концентрации полимера в объеме φb от λ для µ|NVTмоделирования, µ=-40.4.135Очевидно, что зависимость концентрации полимера в системе вдали от стенок отвеличины пристеночного потенциала ослабляется с увеличением расстояния междустенками, и, следовательно, уменьшается влияние размеров системы на величинуизмеряемого давления.Наклон зависимости давления от 1/H в случае µ|NVT моделирования может бытьопределен на основе следующих рассуждений.
В изотермическом случае линейнаясоставляющая изменения свободной энергии при сжатии:(75)При проведении моделирования при постоянной концентрации полимера в объемеφb=φ, мы получаем значение давления в объеме π(φ,T), используя ур-е (dfcan). При µ|NVTмоделировании введение потенциала отталкивания мономеров у стенки λ, приводит кувеличению концентрации в объеме.
В этом случае необходимо учитывать квадратичныйчлен в зависимости изменения свободной энергии от объемной доли полимера в системе:(76)Кроме того(77)Таким образом, получаем:(78)Из наклона этой линейной зависимости, полученной из µ|NVT-моделирования, мыможем оценить значение сжимаемости в объеме как κT=3.6±0.1.Исключение влияния конечного размера системы на результат вычислениядавленияИз приведенных выше рассуждений прямо вытекает идея о способе устранениявлияния конечных размеров системы на величину рассчитываемого давления. Посколькупри моделировании в большом каноническом ансамбле концентрация полимера в объемеφb определяется значением химического потенциала в системе, измерение количествачастиц в пристеночных слоях Nwall(λ) также следует проводить в большом каноническомансамбле.
Данный подход мы будем обозначать как µVT. На рисунке 51 приведены136профили концентрации полимера в направлении z, перпендикулярном стенкам, в системепри различных значениях параметра λ для случая µVT моделирования при µ=-40.4. Всерасчеты этом случае проводятся при постоянной концентрации полимера в объеме φb=0.5при всех значениях H и λ, и, следовательно, влияние размеров системы при вычислениидавления отсутствует.Рис.51. Профили концентрации полимера в системе при различных значенияхпараметра λ для случая µVT моделирования (µ = -40.4).На рисунке 52 приведены зависимости давления от концентрации полимера всистеме при использовании различных методов вычисления давления, описанных выше.Ромбиками обозначено давление при µ=-40.4 для различных значений H. Предельноезначение давления при H→∞ для φb=0.5 обозначено кружком.
Оно получено сиспользованиемµVTподхода(π=0.0914±0.0003)исовпадаетсрезультатомэкстраполяции. Также кружками обозначены значения давления, полученные при помощиµVT подхода для концентрации в объеме φb=0.5082 (µ=-39, π=0.09568) и φb = 0.515 (µ=-38,π=0.09885).
Треугольникамиобозначены значения давления, полученные путемпересчета из точки с φb=0.5 на основе сжимаемости:(79)137Рис.52. Зависимость давления от концентрации полимера в объеме для разныхметодов определения и разных размеров систем: µVT (большие кружки); результатыэкстраполяции на основе сжимаемости из точки с φb=0.5 (треугольники); значениядавления при µ|NVT моделировании с µ=-40.4 для различных размеров системы(ромбы); значения давления при µ=-39, полученные путем пересчета из µ=-40.4 (*).Сама сжимаемость может быть рассчитана в большом каноническом ансамбле наоснове флуктуаций числа цепей в системе:(80)Для µ=-40.4, т.е. φb = 0.5, мы получили значение сжимаемости κT=3.8±0.2, котороесовпадает в пределах ошибки со значением, полученным на основе анализа эффектовконечного масштаба при µ|NVT моделировании (κT=3.6±0.1).
Можно видеть хорошеесовпадение результатов, полученных путем прямого расчета, и путем экстраполяции наоснове сжимаемости. Такое же хорошее совпадение получается и при использованииметода пересчета гистограмм (см. раздел 2.2.6) на основе данных для φb=0.5. На рисункезвездочками обозначены значения полученные путем пересчета из точек с µ-40.4 (φb=0.5)на µ=-39 (φb=0.5082), видно, что они стремятся к правильному значению давления приH→∞.В данном разделе были представлены результаты численного анализа влиянияконечных размеров системы на величину измеряемого давленияпри использованииметода отталкивающей поверхности (МОП) в решеточных моделях полимеров. Учет этихэффектов оказывается важным, когда требуется рассчитать давление с высокой степеньюточности, причем влияние конечных размеров сказывается даже в относительно больших138системах.
Причиной этого является упорядочение вблизи стенок, которое приводит ктому, что средняя концентрация полимера в системе и концентрация в объеме становятсяразличными. Если при проведении моделирования в NVT ансамбле задать среднююконцентрацию полимера в системе φ, оказывается что в такой системе концентрацияполимера в объеме (вдали от стенок) φb(H) оказывается существенно больше φ. МОП вклассическом виде позволяет определять давление в системе, отвечающее концентрации вобъеме, только при H→∞, когда φb(H)→φ. При µVT моделировании φb(H,µ,T)=φ(µ,T),однако, при переходе к NVT ансамблю для проведения измерений в соответствие с МОП(этот случай был описан выше как µ|NVT) в системе опять наблюдается увеличениеконцентрации полимера в объеме φb(H,λ,µ,T) из-за эффекта сжатия системы подвоздействием потенциала отталкивания стенок λ.
Этот эффект также пропадает толькопри H→∞.Таким образом, гарантировать, что все полученные результаты относятся ктребуемой концентрации полимера в объеме и полученное значение давления не требуетпоправок связанных с эффектами конечного масштаба, можно только в случае, когда всеизмерения проводятся в большом каноническом ансамбле. Именно такая модификацияМОП и была впервые предложена в рамках настоящей диссертационной работы. Данныйраздел имеет поэтому важное методологическое значение, так как правильный расчетдавления в компьютерном моделировании весьма важен для определения равновесия фазв различных полимерных системах.4.1.5.
Фазовая диаграммаФазовая диаграмма раствора в переменных «энергия межмономерного притяжения– объемная доля» (рис. 64) включает области стабильности изотропной и нематическойфаз, а также область фазового расслоения. Эта диаграмма была получена на основеанализа зависимости объемной доли φ от химического потенциала µ при разныхзначениях параметра объемного взаимодействия ε, поскольку график зависимости φ(µ)позволяет получить достаточно хорошее представление об объемной доле полимера визотропной и нематической фазах в области перехода и о ширине гистерезиса в областиперехода.139Рис. 53. Фазовая диаграмма раствора жесткоцепных макромолекул в переменных θ/Tот φ, φ - объемная доля полимера, T – температура.