Примеры решения задач (1094491), страница 5
Текст из файла (страница 5)
Ðåãðåññèîííûé àíàëèçËåêöèÿ 94. Ðåãðåññèîííûé àíàëèçÌåòîä íàèìåíüøèõ êâàäðàòîâ. Âûáîðî÷íûé êîýôôèöèåíò êîððåëÿöèè. Âûáîðî÷íûå óðàâíåíèÿ ïðÿìûõ ñðåäíåêâàäðàòè÷åñêîé ðåãðåññèè94.1. Ìåòîä íàèìåíüøèõ êâàäðàòîâ (ÌÍÊ)Ðàçáåð¼ì îäèí èç ìåòîäîâ ïîëó÷åíèÿ ýìïèðè÷åñêîé çàâèñèìîñòèäëÿ ðÿäà íàáëþäåíèé íåçàâèñèìîé ïåðåìåííîé x è çíà÷åíèé ôóíêöèè y .Ïóñòü â ðåçóëüòàòå ýêñïåðèìåíòà ïîëó÷åíà òàáëèöà ýìïèðè÷åñêèõçíà÷åíèé ôóíêöèè y äëÿ ðÿäà çíà÷åíèé íåçàâèñèìîé ïåðåìåííîé x(òàáë. 94.1).xyÒàáëèöà 94.1x1 x2 . .
. xny1 y2 . . . ynÒðåáóåòñÿ ïîäîáðàòü ôóíêöèþ y = f (x), êàê ìîæíî ëó÷øå îïèñûâàþùóþ çàâèñèìîñòü y îò x.Ìåòîä íàèìåíüøèõ êâàäðàòîâ (ÌÍÊ) çàêëþ÷àåòñÿ â âûáîðå òàêîéôóíêöèè èç íåêîòîðîãî êëàññà íåïðåðûâíûõ ôóíêöèé, äëÿ êîòîðîéñóììà êâàäðàòîâ îòêëîíåíèé çíà÷åíèé ôóíêöèè f (xi ) îò ñîîòâåòñòâóþùèõ íàáëþäàåìûõ çíà÷åíèé yi áûëà áû íàèìåíüøåé:Φ=n∑(f (xi ) − yi)27−→ min .f (x)(94.1)i=1 äàííîì ïîñîáèè ìû îãðàíè÷èìñÿ âûáîðîì ôóíêöèé f (x) èç êëàññà ìíîãî÷ëåíîâ. Ãåîìåòðè÷åñêè ýòî óñëîâèå îçíà÷àåò ìèíèìèçàöèþñóììû êâàäðàòîâ ðàññòîÿíèéòî÷åê (xi ; yi ) äî ðàñ( îò íàáëþäàåìûõ)÷¼òíûõ ñ òîé æå àáñöèññîé: xi ; f (xi ) .Ðàññìîòðèì ïðèìåíåíèå ÌÍÊ äëÿ íàõîæäåíèÿ ëèíåéíîé çàâèñèìîñòè: f (x) = ax + b.Äëÿ íàõîæäåíèÿ çíà÷åíèé a è b, îáåñïå÷èâàþùèõ ìèíèìóì ôóíêöèè Φ, âîñïîëüçóåìñÿ íåîáõîäèìûì óñëîâèåì ýêñòðåìóìà: ïðèðàâíÿåì ê íóëþ ÷àñòíûå ïðîèçâîäíûå ïî a è ïî b ôóíêöèè Φ.
Ìîæíî äîêàçàòü, ÷òî íàéäåííûå òàêèì îáðàçîì çíà÷åíèÿ a è b îáåñïå÷àò ìèíèìóìôóíêöèè Φ.Ëåêöèÿ 94. Ðåãðåññèîííûé àíàëèç33Íàéäåì ÷àñòíûå ïðîèçâîäíûå:nnnn∑∑∑∑∂Φ2=2(axi + b − yi )xi = 2axi + 2bxi − 2xi yi ;∂ai=1i=1i=1i=1∑∑∑∂Φ=2(axi + b − yi ) = 2axi + 2nb − 2yi .∂bi=1i=1i=1nnnÏðèðàâíèâàÿ èõ ê íóëþ, ïîëó÷èì ñèñòåìó:∑∑∑ ∂Φ = 0, 2a x2i + 2b xi − 2 xi yi = 0,∂a⇐⇒∑∑ ∂Φ = 0,2a xi + 2nb − 2 yi = 0.∂bÏîñëå íåáîëüøèõ ïðåîáðàçîâàíèé ïîëó÷àåì ñèñòåìó: ∑ 2 ∑∑∑nnn∑∑xxxi yi2iixi yi , a a xi + b xi =+b=,i=1i=1i=1∑nn∑n⇐⇒nn∑∑yi a xi + b = a xi + nb =yi ,nni=1i=1(94.2)èëè, îáîçíà÷èâ:∑∑∑∑ 2xixi yiyixi2= x̄,= ȳ,=x ,= xy,nnnnïîëó÷èì ñèñòåìó (94.3) äëÿ îïðåäåëåíèÿ êîýôôèöèåíòîâ a è b:{ax2 + bx̄ = xy,(94.3)ax̄ + b = ȳ.94.1.
 òàáëèöå 94.2 ïðèâåäåíû çíà÷åíèÿ y ïðè ðàçëè÷íûõ çíà÷åíèÿõ x. Ïîëàãàÿ, ÷òî çàâèñèìîñòü ìåæäó x è y èìååò âèäy = kx + b, íàéòè ìåòîäîì íàèìåíüøèõ êâàäðàòîâ k è b.ÏðèìåðÒàáëèöà 94.2N12345678xi11.522.533.54 4.5yi -1.08 0.24 1.64 2.98 4.26 5.62 7.04 8.3Ð å ø å í è å: Ñèñòåìà (94.3) äëÿ äàííîãî ïðèìåðà ïðèíèìàåò âèä:{8, 875k + 2, 750b = 13, 496,2, 750k + b = 3, 625,34Ëåêöèÿ 94.
Ðåãðåññèîííûé àíàëèçîòêóäà íàõîäèì: k = 2,687; b = −3,765. Íàéäåííàÿ ëèíåéíàÿ çàâèñèìîñòü èìååò âèä: y = 2,687x − 3,765.Ïîñ÷èòàåì çíà÷åíèÿ f (xi ) è íàéä¼ì çíà÷åíèå ôóíêöèè Φ ïî ôîðìóëå (94.1). Ðåçóëüòàòû âû÷èñëåíèé ñâåäåíû â òàáëèöó 94.3, ãäå()2ri = f (xi ) − yi .Òàáëèöà 94.3N12345678xi1,01,52,02,53,03,54,04,5yi−1,08 0,241,642,984,265,627,048,30f (xi ) −1,08 0,271,612,954,305,646,988,33ri00,0007 0,0010 0,0008 0,0013 0,0004 0,0032 0,0007Ïðîñóììèðîâàâ çíà÷åíèÿ â ïîñëåäíåé ñòðîêå òàáë. 94.3, ïîëó÷èììèíèìàëüíîå çíà÷åíèå ôóíêöèè Φ: Φmin = 0,0081.
Ïîëó÷åííîå çíà÷åíèå äà¼ò ïðåäñòàâëåíèå î íàêîïëåííîé îøèáêå ïðè çàìåíå çíà÷åíèéyi íà f (xi ).Îòâåò: y = 2,687x − 3,765.Àíàëîãè÷íûì îáðàçîì ïîëó÷àåòñÿ ñèñòåìà äëÿ îïðåäåëåíèÿ êîýôôèöèåíòîâ a, b, c äëÿ êâàäðàòè÷íîé çàâèñèìîñòè f (x) = ax2 + bx + c: ax4 + bx3 + cx2 = x2 y,ax3 + bx2 + cx = xy, 2ax + bx + c = y.(94.4)94.2.
Ïîêàæåì èñïîëüçîâàíèå ÌÍÊ ñ ïðèìåíåíèåì ïðîãðàììû Mathcad è Maxima.ÏðèìåðËèíåéíàÿ çàâèñèìîñòüORIGIN := 1n := 12/*Ìàññèâ àáñöèññ: */i := 1 . . . n xi := 0.5 + i · 0.5/*Ìàññèâ îðäèíàò: */y := ( −1.79 −0.47 1.74 3.87 4.36 6.56 7.94 8.32 9.34 11.68 13.45 12.87 )T/*Ðåøèì ñèñòåìó (94.3), ïðåäñòàâëåííóþ â ìàòðè÷íîì âèäå:S·A = Q. Çäåñü A ìàòðèöà èñêîìûõ êîýôôèöèåíòîâ, S ìàòðèöàñèñòåìû è Q ñòîëáåö ñâîáîäíûõ ÷ëåíîâ.*/Ëåêöèÿ 94. Ðåãðåññèîííûé àíàëèç35/*Ôîðìèðîâàíèå ñèñòåìû ëèíåéíûõ àëãåáðàè÷åñêèõ óðàâíåíèé */ ∑ ∑nnn∑(xi )2xix i · yiSQi=1S := i=1Q := i=1∑ S := Q :=nn∑nnxinyii=1i=1/*Ðåøåíèå ñèñòåìû S · A = Q */:()()17.0417 3.7532.5996A := lsolve(S, Q) S =, Q=,3.7516.4892()2.7743A=−3.9146/*Ïîëó÷àåì óðàâíåíèÿ ñãëàæèâàþùåé ïðÿìîé ëèíèè: */Y (x) := A1 · x + A2 ./*Íàõîäèì ñóììó êâàäðàòîâ îòêëîíåíèé òåîðåòè÷åñêîãî è ýêñïåðèìåíòàëüíûõ çíà÷åíèé èññëåäóåìîé ôóíêöèè (ìèíèìàëüíîå çíà÷åíèå ôóíêöèè Ô): */Ômin :=n∑(yi − Y (xi ))2Ômin = 5.4591.i=1/*Ãðàôèêè äàííîé çàâèñèìîñòè è ñãëàæèâàþùåé ïðÿìîé ïðèâåäåíû íà ÷åðòåæå.
*/1613Y(x i )107yi41-212345xiÐèñ. 6. Ëèíåéíàÿ çàâèñèìîñòü6736Ëåêöèÿ 94. Ðåãðåññèîííûé àíàëèçMaxima-ïðîãðàììà:(%i1) kill(all)$ numer:true$ ratprint:true$ n:12$ fpprintprec:5$(%i5) x:makelist(0.5+i*0.5,i,1,n);(%i16) y:[-1.79,-0.47, 1.74, 3.87,4.36, 6.56,7.94,8.32, 9.34,11.68, 13.45, 12.87];/*Ôîðìèðóåì ñèñòåìó ëèíåéíûõ óðàâíåíèé.*/(%i7) x1:sum(x[i], i, 1, n)/n; x2:sum(x[i]^2, i, 1, n)/n;(%i9) y1:sum(y[i], i, 1, n)/n; xy:sum(x[i]*y[i], i, 1, n)/n;/*Ðåøàåì ñèñòåìó ëèíåéíûõ óðàâíåíèé.*/(%i11) [globalsolve: true,programmode: true];( %i12) linsolve([x2*k+x1*b=xy, x1*k+b=y1], [k,b]);/*Ñòðîèì ãðàôèê.*/( %i13)wxplot2d([[discrete,x,y],k*t+b],[t,x[1],x[n]],[style,[points,3,2,5],[lines,2,5]], [xlabel,"x"],[ylabel,"y"],[gnuplot\_preamble, "set grid"],[legend,"",""])$/*Âû÷èñëÿåì ñóììó êâàäðàòîâ îòêëîíåíèé.
*/(%i14) Fmin:sum((y[i]-(k*x[i]+b))^2,i,1,n);(%o14) 5.4591Êâàäðàòè÷íàÿ çàâèñèìîñòün := 10i := 1 . . . n/*Ìàññèâ àáñöèññ:*/xi := −2 + i/*Ìàññèâ îðäèíàò:*/y := ( −2.98 − 2.02 1.17 3.03 2.57 1.75 2.74 5.78 8.92 14.76 )T ∑nnn∑∑(xi )4(xi )3(xi )2 i=1i=1i=1 ∑nn∑ n (x )3 ∑(xi )2xiS := i i=1i=1i=1nn ∑∑(xi )2(xi )1ni=1i=1 ∑n(x )2 · yi i=1 i ∑ n x ·yQ := ii i=1n∑yii=1Ëåêöèÿ 94.
Ðåãðåññèîííûé àíàëèç37877.3 129.5 20.5S = 129.5 20.5 3.5 20.53.510.1627A := lsolve(S, Q)A = 0.4227 −1.2416SS :=nQQ :=n171.974Q = 25.382 3.572/*Ïîëó÷àåì óðàâíåíèå ñãëàæèâàþùåé ïàðàáîëû: */Y (x) := A1 · x2 + A2 · x + A3Ômin :=n∑(yi − Y (xi ))2Ômin = 28.8735i=115129Y(x i )6yi30-3-10.523.55xiÐèñ. 7.
Êâàäðàòè÷íàÿ çàâèñèìîñòü6.5838Ëåêöèÿ 94. Ðåãðåññèîííûé àíàëèçMaxima-ïðîãðàììà:(%i1) kill(all)$ fpprintprec:5$ ratprint:true$ numer:true$ n:10$(%i5) x:makelist(-2+i, i, 1, n);(%i6) y:[-2.98, -2.02, 1.17, 3.03, 2.57, 1.75, 2.74,5.78, 8.92, 14.76]/*Ôîðìèðóåì ñèñòåìó ëèíåéíûõ óðàâíåíèé.*/(%i7) x1:sum(x[i], i, 1, n)/n; x2:sum(x[i]^2,i, 1, n)/n;(%i9) x3:sum(x[i]^3, i, 1, n)/n; x4:sum(x[i]^4, i, 1, n)/n;(%i11) y1:sum(y[i], i, 1, n)/n; xy:sum(x[i]*y[i], i, 1,n)/n;(%i13) x2y:sum(x[i]^2*y[i], i, 1, n)/n;/*Ðåøàåì ñèñòåìó ëèíåéíûõ óðàâíåíèé.*/(%i14)[globalsolve: true, programmode: true];(%i15) linsolve([x4*a+x3*b+x2*c=x2y, x3*a+x2*b+x1*c=xy,x2*a+x1*b+c=y1], [a,b,c]);/*Ñòðîèì ãðàôèê.*/(%i16)wxplot2d([[discrete,x,y],a*t^2+b*t+c],[t,x[1],x[n]],[style,[points,3,2,5],[lines,2,5]],[legend,"f","ft"])$/* Âû÷èñëÿåì ñóììó êâàäðàòîâ îòêëîíåíèé. */(%i14) Fmin:sum((y[i]-(a*x[i]^2+b*x[i]+c))^2,i,1,n);(%o14) 28.873Ëåêöèÿ 94.
Ðåãðåññèîííûé àíàëèç39Ïîëèíîìèàëüíàÿ çàâèñèìîñòüM := 3 /*(Êóáè÷åñêàÿ çàâèñèìîñòü)*/n := 10i := 1 . . . n/* Ìàññèâ àáñöèññ:*/xi := −2 + i/* Ìàññèâ îðäèíàò:*/y := ( −2.98 − 2.02 1.17 3.03 2.57 1.75 2.74 5.78 8.92 14.76 )TS := f ori ∈ 1 . . . M + 1f orj ∈ 1 . . . M + 1n∑(xk )(2·M +2−i−j)Ai,j ←k=1AQ := f ori ∈ 1 .
. . M + 1n∑(xk )(M +1−i) · ykBi ←k=1B0.0873 −0.754 A := lsolve(S, Q) A = 2.3519 −0.5083S :=SnQ :=QnY (x) :=M+1∑Am · xM +1−mm=1Ômin :=n∑(yi − Y (xi ))2Ômin = 5.335i=1Maxima-ïðîãðàììà(%i1) kill(all)$ fpprintprec:5$ ratprint:true$ numer:true$ n:10$ m:3$(%i6) x:makelist(-2+i, i, 1, n);(%i7) y:[ -2.98, -2.02, 1.17,3.03,2.57,1.75,2.74,5.78,8.92,14.76];/*Ôîðìèðóåì äâóìåðíûé ìàññèâ A.*/(%i8) for i:1 while i<=m+1 do (if abs(x[i])<0.000001 then x[i]:0.000001,B[i,1]:sum(x[k]^(m+1-i)*y[k], k, 1, n)/n,for j:1 while j<=m+1 do(A[i,j]:sum(x[k]^(2*m+2-i-j), k, 1, n)/n));/*Ñîçäàåì ïðàâóþ ÷àñòü ñèñòåìû ëèíåéíûõ óðàâíåíèé.*/(%i9) b:genmatrix(B, m+1, 1);/* Ñîçäàåì ìàòðèöó A èç äâóìåðíîãî ìàññèâà A.*/40Ëåêöèÿ 94. Ðåãðåññèîííûé àíàëèç151296yi3Y(x i )0-3-10.523.556.5xiÐèñ.
8. Ïîëèíîìèàëüíàÿ çàâèñèìîñòü(%i10) C:genmatrix(A, m+1, m+1);/*Ðåøàåì ñèñòåìó ëèíåéíûõ óðàâíåíèé.*/(%i11) D:lu_factor(C, generalring);(%i12) a:lu_backsub(D, b);/*Çàäàåì ôóíêöèþ â âèäå ïîëèíîìà ñòåïåíè m.*/(%i13) yt(t):=sum(a[k][1]*t^(m+1-k), k, 1, m+1);/*Ñòðîèì ãðàôèê.*/(%i14) wxplot2d([[discrete,x,y], yt(t)], [t, x[1], x[n]],[style, [points, 3, 2, 5], [lines, 2, 5]],[legend,"f","ft"])$/* Âû÷èñëÿåì ñóììó êâàäðàòîâ îòêëîíåíèé. */(%i15) F:sum((yt(x[i]) -y[i])^2, i, 1, n);8Ëåêöèÿ 94. Ðåãðåññèîííûé àíàëèç4194.2.