Главная » Просмотр файлов » Попов В.П. Основы теории цепей (1985)

Попов В.П. Основы теории цепей (1985) (1092095), страница 86

Файл №1092095 Попов В.П. Основы теории цепей (1985) (Попов В.П. Основы теории цепей (1985)) 86 страницаПопов В.П. Основы теории цепей (1985) (1092095) страница 862018-02-13СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 86)

Исходя из этих соображений, рассмот. рпм, какие требования должны предъявляться к выбору сопротивлений продольной У, и поперечной У~ ветвей П- и Т-образных звеньев реактивных фильтров. В соответствии с принятыми допущениями будем считать, что сопротивления л1 и Яэ имеют чисто реактивный характер Я, ==- !к,, Л, = .— !к, вследствие чего сп Г =- 1 + Л,'(22,) должен быть вещественной величиной.

Учитывая, что сп Г = с11 (А -' !В) =- сп А сп !В + з)з А зп !В == сп А соз В + -- ! зп А э!п В. уравнение (8.1 !2) можно заменить равносильной ему системой уравнений с вещественными коэффициентами: сп А соз В =- 1 + кк! (2кз); зй А з!и В = О. (8.114) В пределах полосы пропускаиия постоянная ослабления А = О, з!! А = О, с11 А =- 1, (8.115) а постоянная фазы В изменяется по закону соз В =-. 1 + к,l (2ка). (8. 1! 6) За пределамн полосы пропускания А Ф 0 п, следовательно, гйп В =- 0; (8.1! 7) сй А: - !! (- х,! (2к,) !. (8А 18) В связи с тем что значение соз В по абсолютному значению не может превышать единицу, соотногнение сопротивлений х, с, и х".сг в преелах полосы пропускания должно удовлетворять условию — 1 ( 1 + д хгl(2хг) ( 1, которое можно преобразовать к виду — 2 ( х,г (2хг) ( О или — ! и хг4хг О. (8.119) Неравенство (8.!19) называется у с л о в и е м п р о з р а ч н о.

с т и фильтра. Очевидно, что для выполнения условия прозрачности, т е для обеспечения в определенном диапазоне частот равенства нулю постоянной ослабления А фильтра, необходимо, чтобы мнимые сгютавляющие сопротивлений Яг и Е, имели различные знаки, илц чтобы сопротивления продольной и поперечной ветвей фильтра имели различный характер.

Предельные значения частоты, на которых выполняются условия прозрачности фильтра, являются границами полосы пропускания (частотами среза). На этих частотах сопротивления продольной и поперечной ветвей фильтра связаны соотношениями г„(42,)=О; ги(42,)= — ! или — 2,= — 4л .

Таинм образом, на одной мз частот среза сопротивление продольной ветви фильтра должно быть равно иулиь а иа другой частоте среза полное сопротивление Ег продольной ветви должно быть в четыре раза больпге, чем полное сопротивление 2г поперечной ветви. Рассматривая выражения для характеристических сопротивлений П- н Т-образных четырехполюсннков (см. пример 8.25) с учетом (8.119), устанавливаем, что в пределах полосы пропускания характеристиче. скип сопротивления как Г-, так и Т-образного звеньев имеют чисто резистивный харакгпер, а за пределами полосы пропускания — чисто ре. активный. Таким образом, условия, при которых постоянная ослабления А = О (8.119), совпадают с условиями, при которых характеристическое сопротивление фильтра имеет вещественный характер.

В связи с тем что характеристические сопротивления симметричных П- и Т-образных звеньев совпадают с характеристическими входным и выходным сопротивлением Г-образного звена, а характеристическая постоянная передачи П- и Т-образных звеньев равна удвоенной характеристической постоянной передачи Г-образного звена, полосы пропускания Г-, П- и Т-образных звеньев при одних и тех же значениях сопротивлении 7т и Лг одинаковы, а постоянная ослабления н постоянная фазы Г-образного звьна будут вдвое ниже, чем соответствующие постоянные Т- илн П-образных звеньев. Пусть параметры элементов, образующих продольную и попереч. ную ветви Г-образного звена, выбраны таким образом, что произведение комплексных сопротивлений ветвей не зависит от частоты и равно квадрату некоторого вещественного числа йн — лг 2ег лг 2г Очевидно, что в этом случае произведение характеристических вхо наго и выходного сопротивлений Г-образного звена, как и произвед ние характеристических сопротивлений П- и Т-образных звеньев, та же будет равно йх: тсп Ест = сох 2х = нсв.

(8.12 Реактивные фильтры, собранные из звеньев, параметры элемент< которых удовлетворяют условию (8.120), называются ф и л ь т р а м т и п а !е (рнс. 8.37). ь/г гс ь~/2 о) а) 1,,/г г Рис. 8.37, Схемы Г-образных звеньев фильтров типа й: а — нижних частот; б — верхних частот; а — полосового. а — аа- нерживаатщего Подставляя (8,120) в (8.1!9), находим условие прозрачности фильтров типа йм — 1( йх!(4Л) - 0 — 1 ( Л) ! 4йх ( О. нли В пределах полосы пропускания постоянная ослабления П- илн Т-образного звена фильтра типа й равна нулю, а за пределами полосы пропускания плавно нарастает в соответствии с выражением сЬ А = !1+ йх! (2Д)! = !1+ Лт! (2ап)!. Характеристические сопротивления П- и Т-образных звеньев типа я определяются соотношениями 2сп = Ест =йУ1+Л~/(4У~) (8.121) й )/ !+Яд!(4ла) Как видно из (8.121), в пределах полосы пропускания характеристическое сопротивление Т-образного звена фильтра типа й изменяется 40В „ О до А, а характеристическое сопротивление П-образного звена— рт й да оо.

Сравнительно медленное нарастание постоянной ослабления за „ределамн полосы пропускания и ярко выраженная зависимость ха- актеристического сопротивления от частоты в пределах полосы пропускания являются существенными недостатками фильтров типа й. При согласованном каскадном соединении большого числа звеньев ослабление фильтра типа А в полосе задержнвания может быть значительно увеличено, однако зависимость характеристического сопротивления фильтра от частоты не позволяет согласовывать фильтр в пределах всей полосы пропускання, вследствие чего характеристики реальных фильтров типа й значи- ~ / тельно отличаются от рассмотрен- „и , /г ных. Недостатки фильтров типа й в значительной степени устраняются в фильтрах типа т. Для г,(т т)/г построения такого фильтра сопротивления продольной и поперечной ветвей фильтра типа й, называемо- а) го и р о т о т и п о и, изменяют рис З За Последовзтельно-производтаким образом, чтобы одно иэ ха- ное (о) и пврзллельио-производное рактеристических сопротивлений (о) звенья фильтров типа т полученного звена в пределах паласы прапускания почти не зависело от частоты, а другое — оставалось равным соответствующему характеристиче=кому сопротивлению прототипа.

Равенство одного из характернстиьескиз сопротивлений Г-образного звена фильтра типа и характеристз ческому сопротивлению прототипа позволяет каскадно соединять згенья обоих типов. Различают последовательно-производные и параллельнс-производные звенья фильтров типа т. Если при построении бзильтра типа пз неизменным остается характеристическое сопротивление Лт, то получившиеся звенья называютси п о след он а тел ь н о-и р пи з в одн ы м и. Если при переходе от фильтра типа й к фильпру типа пз остается неизменным характеристическое сопротивление Яп, то звенья называются параллельнапроизводными (рнс. 838). Характеристики фильтра типа тл в значительной степени зависят от выбора значения коэффициента т, которое может изменяться в пределах от О да 1.

Паласа пропускания рассматриваемого фильтра совпадает с полосой пропускания прототипа, причем за пределами полосы пропускання постоянная ослабления фильтра типа пз увеличивается более круто и достигает на отдельных частотах значительно ббльших значений, чем у соответствующего фильтра типа й. Более резкое увеличение затухания за пределами полосы пропускаиия наблюдается и у фильтров, собранных из симметричных мостовых звеньев (см. рис. 8.18, а), однако характеристическое сопротивление м о г т о в ы х фильтров изменяется в пределах полосы пропускания в весьма широких пределах. 409 Дифференцирующие и интегрирующие цепи В радиотехнической практике широко используются устройства, напряжение и, на выходе которых практически пропорционально производной или интегралу от входного напряжения и,.

Такие устройства называются соответственно д и фф е р е н и и р у ю щ и м и или и н. т е г р и р у ю ш и м и цепями. В простейшем случае дифференцирование или интегриро- Я 0 ванне напряжения может производиться с помощью пассивных двухэлемент- О г ных четырехполюсников (рнс.

8.39). г и :;~а) ха(Р) 'гР) о — )С:) — ~ — о иг и, с "г и, г) Рнс. 8.39. Схемы простейнюх цнфференцнрующнх (а, б) и нптегрнрующнх (а, е) цепей Ряс. 8.40, Обобщенная схе. ма аамсщспня простейших цнфференцнрующнх и ннтсг. рнрующнх ясней Для определения требований к элементам, входящим в состав дифференцнруюших н интегрирующих цепей, рассмотрим обобщенную схему замещения таких цепей, представленную на рис.

8г40. Если напряжение на выходе цепи и, пропорционально производной от входного напряжения и,: Них иа=а,— И К„(р) .= а,'р, где ае — т1огтоянпый коэффициент. где а, — некоторое действительное число, то в соответствии с теоремой дифференцирования операторные изображении этих величин Уя (р) ~ Ф иа н ()х (р) Ф и, при нулевых начальных условиях должны быть связаны соотношением ()г (Р) ' ахр()т (Р). Следовательно, операторный коэффициент передачи по напряжению днфференцирующей цепи должен быть пропорционален р: Кгц (р) а,р. Аналогичным образом устанавливаем, что операторный коэффициент передачи по напряжению интегрирующей цспн должен быть пропорционален р -'. Полагая, что сопротивление нагрузки обобщенной цепи столь вен„о, что током 1т (р) можно пренебречь по сравнению с 1, (р), нахоим выражения для коэффициента передачи обобщенной цепи по на- пряжению Км (р) — ' — (8. 122) та (Р)+Ль (Р) ) +ЛЬ (Р)(да (Р) Как видно из выражения (8.122), операторный коэффициент передачи обобщенной цепи может быть пропорционален р или р-' только при )Зь (р))2.

(рн ъ 1. (8.123) В этом случае для дифференцнрующей цепи приближенно выполняется соотношение 2, (р)/2ь (р) = а,р, а для интегрирующей цепи 2, (р)/с.'ь (р) =- ав/р. Для дифференцнрующей цепи выполнение условия (8.123) равносильно тому, что постоянная времени цепи тв =- Ы)с (см. рис. 8.39, а) или т< —— — )сС (см. рис. 8.39, б) намного меньше длительности дифференцнруемого сигнала. Для интегрирующей цепи условие (8.123) означает, что постоянная времени цепи должна быть значительно больше длительности интервала интегрирования, Из (8.123) также вытекает, что напряжение на выходе иа простейг ~их дифференцнрующих и интегрирующих цепей оказывается намного меньшим, чем напряжение на входе и, этих цепей. Увеличение напряжения ит может быть достигнуто путем усложнения схем дифференцирующих и интегрирующих цепей, в частности путем применения цепей, содержащих не только пассивные, но и активные элементы.

Гиратор Г и р а т о р ом называется идеализированный трехполюсный элемент, комплексные действующие значения напряжений и токов на зажимах которого связаны между собой соотношениями ~ =Фв' гв= (8. 124) где и — постоянное вещественное число, называемое к о э ф ф ициентом гирацни или гираторной проводимое т ь ю. Условное графическое обозначение гиратора, используемое при построении эквивалентных схем электрических цепей, и ус- ! ( а) б) ловные положительные направления напряжений н токов на зажимах гиратора приведены на Рис. 8.41, а.

Характеристики

Тип файла
DJVU-файл
Размер
3,84 Mb
Тип материала
Высшее учебное заведение

Список файлов книги

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее