Диссертация (1090326), страница 38
Текст из файла (страница 38)
Biophys. Acta. 2008. V. 1780. P. 315–321.20671.Zheng Y., Boeglin W.E., Schneider C., Brash A.R. A 49 KD mini-lipoxygenasefrom Anabaena sp. PCC 7120 retains catalytically complete functionality // J. Biol.Chem. 2008. V. 283. P. 5138–5147.72.Schneider C., Niisuke K., Boeglin W.E., Voehler M., Stec D.F., Porter N.A., BrashA.R. Enzymatic synthesis of a bicyclobutane fatty acid by a hemoproteinlipoxygenase fusion protein from the cyanobacterium Anabaena PCC 7120 //Proc.
Natl. Acad. Sci. USA. 2007. V. 104. P. 18941–18945.73.Gao B., Boeglin W.E., Zheng Y., Schneider C., Brash A.R. Evidence for an ionicintermediate in the transformation of fatty acid hydroperoxide by a catalaserelated allene oxide synthase from the cyanobacterium Acaryochloris marina // J.Biol. Chem. 2009. V. 284. P. 22087–22098.74.Chahinian H., Sias B., Carriere F. The C-terminal domain of pancreatic lipase:Functional and structural analogies with C2 domains // Curr. Protein Pept. Sci.2000. V. 1. P. 91–103.75.Maccarrone M., Salucci M.L.
Tryptic digestion of soybean lipoxygenase-1generates a 60 kDa fragment with improved activity and membrane binding ability// Biochemistry. 2001. V. 40. P. 6819–6827.76.Dainese E., Angelucci C.B., Sabatucci A., De Filippis V., Mei G., Maccarrone M.A novel role for iron in modulating the activity and membrane-binding ability of atrimmed soybean lipoxygenase-1 // FASEB J. 2010. V. 24. P. 1725–1736.77.Walther M., Anton M., Wiedmann M., Fletterick R., Kuhn H. The N-terminaldomain of the reticulocyte-type 15-lipoxygenase is not essential for enzymaticactivity but contains determinants for membrane binding // J. Biol.
Chem. 2002. V.277. P. 27360–27366.78.Winkler F.K., D’Arcy A., Hunziker W. Structure of human pancreatic lipase //Nature. 1990. V. 343. P. 771–774.79.May C., Hohne M., Gnau P., Schwennesen K., Kindl H. The N-terminal β-barrelstructure of lipid body lipoxygenase mediates its binding to liposomes and lipidbodies // Eur. J.
Biochem. 2000. V. 267. P. 1100–1109.20780.Tatulian S.A., Steczko J., Minor W. Uncovering a calcium-regulated membranebinding mechanism for soybean lipoxygenase-1 // Biochemistry. 1998. V. 37. P.15481–15490.81.Kulkarni S., Das S., Funk C.D., Murray D., Cho W. Molecular basis of the specificsubcellular localization of the C2-like domain of 5-lipoxygenase // J. Biol. Chem.2002.
V. 277. P. 13167–13174.82.Walther M., Wiesner R., Kuhn H. Investigations into calcium-dependentmembrane association of 15-lipoxygenase-1. Mechanistic roles of surfaceexposed hydrophobic amino acids and calcium // J. Biol. Chem. 2004. V. 279. P.3717–3725.83.Hammarberg T., Provost P., Persson B., Radmark O. The N-terminal domain of5-lipoxygenase binds calcium and mediates calcium stimulation of enzymeactivity // J.
Biol. Chem. 2000. V. 275. P. 38787–38793.84.Chen X.S., Funk C.D. The N-terminal “β-barrel” domain of 5-lipoxygenase isessential for nuclear membrane translocation // J. Biol. Chem. 2001. V. 276. P.811–818.85.Brinckmann R., Schnurr K., Heydeck D., Rosenbach T., Kolde G., Kuhn H.Membrane translocation of 15-lipoxygenase in hematopoietic cells is calciumdependent and activates the oxygenase activity of the enzyme // Blood.
1998. V.91. P. 64–74.86.Schenk G., Neidig M.L., Zhou J., Holman T.R., Solomon E.I. Spectroscopiccharacterization of soybean lipoxygenase-1 mutants: The role of secondcoordination sphere residues in the regulation of enzyme activity // Biochemistry.2003. V. 42. P. 7294–7302.87.Kuban R.J., Wiesner R., Rathman J., Veldink G., Nolting H., Sole V.A., Kuhn H.The iron ligand sphere geometry of mammalian 15-lipoxygenases // Biochem. J.1998.
V. 332 (Pt 1). P. 237–242.88.Dainese E., Sabatucci A., van Zadelhoff G., Angelucci C.B., Vachette P., VeldinkG.A., Agrò A.F., Maccarrone M. Structural stability of soybean lipoxygenase-1 in208solution as probed by small angle X-ray scattering // J. Mol. Biol. 2005. V. 349. P.143–152.89.Di Venere A., Salucci M.L., van Zadelhoff G., Veldink G., Mei G., Rosato N.,Finazzi-Agrò A., Maccarrone M. Structure-to-function relationship of minilipoxygenase, a 60-kDa fragment of soybean lipoxygenase-1 with lower stabilitybut higher enzymatic activity // J. Biol. Chem.
2003. V. 278. P. 18281–18288.90.Hammel M., Walther M., Prassl R., Kuhn H. Structural flexibility of the N-terminalbeta-barrel domain of 15-lipoxygenase-1 probed by small angle X-ray scattering.Functional consequences for activity regulation and membrane binding // J. Mol.Biol. 2004. V. 343. P. 917–929.91.Borngraber S., Browner M., Gillmor S., Gerth C., Anton M., Fletterick R., Kuhn H.Shape and specificity in mammalian 15-lipoxygenase active site. The functionalinterplay of sequence determinants for the reaction specificity // J. Biol. Chem.1999. V.
274. P. 37345–37350.92.Borngraber S., Kuban R.J., Anton M., Kuhn H. Phenylalanine 353 is a primarydeterminant for the positional specificity of mammalian 15-lipoxygenases // J. Mol.Biol. 1996. V. 264. P. 1145–1153.93.Knapp M.J., Klinman J.P. Kinetic studies of oxygen reactivity in soybeanlipoxygenase-1 // Biochemistry. 2003. V. 42. P. 11466–11475.94.Chu K., Vojtchovsky J., McMahon B.H., Sweet R.M., Berendzen J., Schlichting I.Structure of a ligand-binding intermediate in wild-type carbonmonoxy myoglobin //Nature. 2000. V. 403. P. 921–923.95.Ostermann A., Waschipky R., Parak F.G., Nienhaus G.U.
Ligand binding andconformational motions in myoglobin // Nature. 2000. V. 404. P. 205–208.96.Scott E.E., Gibson Q.H. Ligand migration in sperm whale myoglobin //Biochemistry. 1997. V. 36. P. 11909–11917.20997.Knapp M.J., Seebeck F.P., Klinman J.P. Steric control of oxygenationregiochemistry in soybean lipoxygenase-1 // J.
Am. Chem. Soc. 2001. V. 123. P.2931–2932.98.Hamberg M., Samuelsson B. On the specificity of the oxygenation of unsaturatedfatty acids catalyzed by soybean lipoxidase // J. Biol. Chem. 1967. V. 242. P.5329–5335.99.Kuhn H., Sprecher H., Brash A.R. On singular or dual positional specificity oflipoxygenases // J. Biol. Chem.
1990. V. 265. P. 16300–16305.100.Kuhn H., Schewe T., Rapoport S.M. The stereochemistry of the reactions oflipoxygenases and their metabolites. Proposed nomenclature of lipoxygenasesand related enzymes // Adv. Enzymol. Relat. Areas Mol. Biol. 1986. V. 58. P.273–311.101.Browner M., Gillmor S.A., Fletterick R. Burying a charge // Nat. Struct. Biol. 1998.V. 5. P. 179.102.Prigge S.T., Gaffney B.J., Amzel L.M. Relation between positional specificity andchirality in mammalian lipoxygenases // Nat. Struct.
Biol. 1998. V. 5. P. 178–179.103.Hornung E., Walther M., Kuhn H., Feussner I. Conversion of cucumber linoleate13-lipoxygenase to a 9-lipoxygenating species by site-directed mutagenesis //Proc. Natl. Acad. Sci. USA. 1999. V. 96. P. 4192–4197.104Gardner H.W. Soybean lipoxygenase-1 enzymically forms both (9S)- and (13S)hydroperoxides from linoleic acid by a pH-dependent mechanism // Biochim.Biophys.
Acta. 1989. V. 1001. P. 274–281.105.Walther M., Roffeis J., Jansen C., Anton M., Ivanov I., Kuhn H. Structural basisfor pH-dependent alterations of reaction specificity of vertebrate lipoxygenaseisoforms // Biochim. Biophys. Acta. 2009. V. 1791. P. 827–835.106.Walther M., Ivanov I., Myagkova G., Kuhn H. Alterations of lipoxygenasespecificity by targeted substrate modification and site-directed mutagenesis //Chem. Biol. 2001. V. 8.
P. 779–790.210107.Meruvu S., Walther M., Ivanov I., Hammarstrom S., Furstenberger G., Krieg P.,Reddanna P., Kuhn H. Sequence determinants for the reaction specificity ofmurine (12R)-lipoxygenase: Targeted substrate modification and site-directedmutagenesis // J. Biol. Chem. 2005. V. 280. P. 36633–36641.108.Coffa G., Brash A.R. A single active site residue directs oxygenationstereospecificity in lipoxygenases: Stereocontrol is linked to the position ofoxygenation // Proc.
Natl. Acad. Sci. USA. 2004. V. 101. P. 15579–15584.109.Coffa G., Schneider C., Brash A.R. A comprehensive model of positional andstereo control in lipoxy-genases // Biochem. Biophys. Res. Commun. 2005. V.338. P. 87–92.110.Coffa G., Imber A.N., Maguire B.C., Laxmikanthan G., Schneider C., GaffneyB.J., Brash A.R. On the relationships of substrate orientation, hydrogenabstraction, and product stereochemistry in single and double dioxygenations bysoybean lipoxygenase-1 and its Ala542Gly mutant // J.
Biol. Chem. 2005. V. 280.P. 38756–38766.110.Boeglin W.E., Itoh A., Zheng Y., Coffa G., Howe G.A., Brash A.R. Investigation ofsubstrate binding and product stereochemistry issues in two linoleate 9lipoxygenases // Lipids. 2008. V. 43. P. 979–987.111.Sloane D.L., Leung R., Barnett J., Craik C.S., Sigal E. Conversion of human 15lipoxygenase to an efficient 12-lipoxygenase: The side-chain geometry of aminoacids 417 and 418 determine positional specificity // Protein Eng. 1995. V. 8. P.275–282.112.Sloane D.L., Leung R., Craik C.S., Sigal E.
A primary determinant forlipoxygenase positional specificity // Nature. 1991. V. 354. P. 149–152.113.Vogel R., Jansen C., Roffeis J., Reddanna P., Forsell P., Claesson H.E., Kuhn H.,Walther M. Applicability of the triad concept for the positional specificity ofmammalian lipoxygenases // J. Biol. Chem. 2010. V. 285. P. 5369–5376.211114.Burger F., Krieg P., Marks F., Furstenberger G. Enzymic characterization ofepidermis-derived 12lipoxygenase isoenzymes // Biochem. J. 2000.
V. 348 (Pt 2).P. 329–335.115.Watanabe T., Haeggstrom J.Z. Rat 12-lipoxygenase: Mutations of amino acidsimplicated in the positional specificity of 15- and 12-lipoxygenases // Biochem.Biophys. Res. Commun. 1993. V. 192. P. 1023–1029.116.Suzuki H., Kishimoto K., Yoshimoto T., Yamamoto S., Kanai F., Ebina Y.,Miyatake A., Tanabe T.
Sitedirected mutagenesis studies on the iron-bindingdomain and the determinant for the substrate oxygenation site of porcineleukocyte arachidonate 12-lipoxygenase // Biochim. Biophys. Acta. 1994. V.1210. P. 308–316.117.Schwarz K., Walther M., Anton M., Gerth C., Feussner I., Kuhn H. Structuralbasis for lipoxygenase specificity. Conversion of the human leukocyte 5lipoxygenasetoa15-lipoxygenatingenzymespeciesbysite-directedmutagenesis // J. Biol. Chem. 2001. V.