Диссертация (1090326), страница 41
Текст из файла (страница 41)
P. 691––694.210.Lapitskaya M.A., Vasiljeva L.L., Pivnitsky K.K. A chemoselective synthesis offunctionalized 1,4-alkadiynes (skipped diacetylenes) // Synthesis 1993. P 65–66.211.Ivanov I., Romanov S.G., Groza N.V., Nigam S., Kuhn H., Myagkova G.I. ASimple method for preparation of (5Z, 8Z, 11Z, 14Z)-16-hydroxyeicosa-5,8,11,14tetraenoic acid enantiomers and the corresponding 14,15-dehydro analogues:role of the 16-hydroxy group for the lipoxygenase reaction // Bioorg. Med. Chem.2002. V. 10.
P. 2335–2343.212.Ivanov I., Romanov S.G., Shevchenko V.P., Rozhkova E.A., Maslov M.A., GrozaN.V., Myasoedov N.F., Kuhn H., Myagkova G.I. A convergent syntesis of(17R, 5Z, 8Z, 11Z, 14Z)-17-hydroxyeicosa-5,8,11,14-tetraenoic acid analoguesand their tritiated derivatives // Tetrahedron 2003. V. 59. P. 8091–8097.222213.Yamaguchi M., Hirao I. An efficient method for the alkylation of oxyranes byalkynyl boranes // Tetrahedron Lett. 1983. V. 24. P. 391–394.214.Groza N. V., Ivanov I. V., Romanov S. G., Myagkova G.
I., Nigam S. A novelsynthesis of 3(R)-HETE, 3(R)-HTDE and enzymatic synthesis of 3(R),15(S)DiHETE // Tetrahedron 2002. V 58. P. 9859–9863.215.Romanov S.G., Ivanov I., Groza N.V., Kuhn H., Myagkova G.I. Total synthesis of(5Z, 8Z, 11Z, 14Z)-18-and19-oxoeicosa-5,8,11,14-tetraenoicacids//Tetrahedron 2002. V. 58. P. 8483–8487.216.Posner G.H., Whitten C.E., McFarland P.E. Organocopperchemistry. Halo-,cyano-, and carbonyl-substituted ketones from the corresponding acyl chloridesand organocopper reagents // J. Am. Chem. Soc. 1972. V.
94. P. 5106–5108.217.Romanov S.G., Ivanov I., Shevchenko V.P., Nagaev I.Yu., Pushkov A.A.,Myasoedov N.F., Myagkova G.I., Kuhn H. Synthesis of (5Z, 8Z, 11Z, 14Z)-18and 19-azidoeicosa-5,8,11,14-tetraenoic acids and their [5,6,8,9,11,12,14,153H8]-analogues through a common synthetic route // Chem. Phys. Lipids 2004. V.130.
P. 117–126.218.Shevchenko V.P., Myagkova G.I., Lazurkina T.Yu., Dyomin P.M., Shram S.I.,Zabolotsky D.A., Nagaev I.Yu., Belosludtsev Yu.Yu., Evstigneeva R.P.,Myasoedov N.F. Synthesis of tritium-labelled natural prostaglandins of series1,2,3 // J. Labelled Compd. Radiopharm. 1989. V. 27. P. 1177–1193.219.Mitsunobu O. The use of diethyl azidocarboxlate and triphenylphosphine insynthesis and transformation of natural products // Synthesis 1981. P. 1–23.220.Lie Ken Jie M.S.F., Lao H.B..
Fatty acids, part 31. Thepreparation and somephysical properties of azido fatty esters // Chem. Phys. Lipids 1987. V. 45. P. 65–74.221.Lane J.W.; Halcomb R. L. New design concepts for constraining glycosylatedamino acids //Tetrahedron 2001. V. 57. P. 6531–6538.223222.Koviach J.L., Chappell M.D., Halcomb R.L. Design and Synthesis ofConformationally Constrained Glycosylated Amino Acids // J. Org. Chem.
2001.V. 66. P. 2318–2326.223.Schewe C., Schewe T., Wendel A. Strong inhibition of mammalian lipoxygenasesby the antiinflammatory seleno-organic compound ebselen in the absence ofglutathione // Biochem. Pharmacol. 1994. V. 48. P. 65–74.224.Walther M., Holzhütter H.G., Kuban R.J., Wiesner R., Rathmann J., Kuhn H. Theinhibition of mammalian 15-lipoxygenases by the anti-inflammatory drug ebselen:dual-type mechanism involving covalent linkage and alteration of the iron ligandsphere // Mol. Pharmacol. 1999.
V. 56. P.196– 203.225.Lapenna D.,Ciofani G.,Pierdomenico S.D.,Neri M.,Cuccurullo C.,Giamberardino M.A., Cuccurullo F. Inhibitory activity of salicylic acid onlipoxygenase-dependent lipid peroxidation // Biochim. Biophys. Acta. 2009. V.1790. P. 25–30.226.Here S., Schadendorf T., Ivanov I., Herberger Ch., Steinle W., Rück-Braun K.,Preissner R., Kuhn H. Photoactivation of an inhibitor of the 12/15lipoxygenasepathway // ChemBioChem. 2006. V.7. P. 1089–1095.227.Yu S.-C., Borchert A., Kuhn H., Ivanov I. Synthesis of a new seleninic acidanhydride and mechanistic studies into its glutathione peroxidase activity //Chemistry Eur. J.
2008. V 14. P. 7066–7071.228.Yu S.-C., Kuhn H., Daniliuc C.G., Ivanov I., Jones P.G., du Mont W.W. 5Selenization of salicylic acid derivatives yielded isoform-specific 5-lipoxygenaseinhibitors // Org. Biomol. Chem. 2010. V. 8. P. 828–834.229.Nelson R.E., Degering E.F., Bilderback J.A. The Action of Selenium Tetrachlorideon Some Esters of Salicylic Acid // Am. Chem. Soc.1938. V. 60. P. 1239–1241.230.Romanov S., Wiesner R., Myagkova G., Kuhn H., Ivanov I. Affinity labeling of therabbit 12/15-lipoxygenase using azido derivatives of arachidonic acid //Biochemistry 2006.
V. 45. P. 3554–3562.224231.Rapoport S.M., Schewe T., Wiesner R., Halangk W., Ludwig P., Janicke-HöhneM., Tannert C., Hiebsch C., Klatt D. The lipoxygenase of reticulocytes.Purification, characterization and biological dynamics of the lipoxygenase; itsidentity with the respiratory inhibitors of the reticulocyte // Eur. J.
Biochem. 1979.V. 96. P. 545–561.232.Wattenberg A., Organ A.J., Schneider K., Tyldesley R., Bordoli R., Bateman R.H.Sequence dependent fragmentation of peptides generated by MALDI quadrupoletime-of-flight (MALDI Q-TOF) mass spectrometry and its implications for proteinidentification // J. Am. Soc. Mass. Spectrom. 2002. V. 13. P. 772-83233.Kale L., Skeel R., Bhandarkar M., Brunne, R., Gursoy R., Krawetz N., Phillips J.,Shinozaki J., Varadarajan K., Schulten K. NAMD2: greater scalability for parallelmolecular dynamics // J. Comput.
Phys. 1999.V. 151. P. 283–312.234.Ivanov I., Romanov S., Odzdoba Ch., Holzhutter H.-G., Myagkova G., Kuhn H.Enantioselective substrate specificity of 15-lipoxygenases // Biochemistry 2004.V. 43, P. 15720–15728.234.Maury G., Ginestar E. Srairi D., Thaler-Dao H., Dembele-Duchesne M. J., LorquinJ., Crastes, and de Paulet, A. Racemic LTA4 methyl ester bioconversion intoLTC4 methyl ester by various glutathione S-transferases // Biochem. Int. 1987.
V.15, P.1127–1135.235.Uppenberg J., Ohrner N., Norin M., Hult K., Kleywegt G. J., Patkar S., WaagenV., Anthonsen T., Jones, T. A. The selectivity of CALB for the (R)-enantiomer hasbeen ationalized based on the crystal structure and modelling of the active site //Biochemistry 1995. V. 34. P. 16838–16851.236.Raza S., Fransson L., Hult, K. Enantioselectivity in Candida antarctica lipase B: amolecular dynamics study // Protein Sci. 2001.
V. 10. P. 329–338.237.Vigorita M.G., Ottana R., Monforte F., Maccari R., Monforte M.T., Trovato A.,Taviano N., Miceli M.F., De Luca G., Alcaro S., Ortuso F. Chiral 3,3′-(1,2ethanediyl)-bis-[2-(3,4-dimethoxyphenyl)-4-thiazolidinones] with antiinflammatoryactivity. Part 11: evaluation of COX-2 selectivity and modeling // Bioorg. Med.Chem. 2003. V.
11. P. 999–1006.225238.Dupont R., Goossens J.-F., Cotelle N., Vrielynck L., Vezin H.,.Henichart J.-P.,Cotelle P. New bis-catechols 5-lipoxygenase inhibitors // Bioorg. Med. Chem.2001. V. 9. P. 229–235.239.Noguchi N., Yamashita H., Hamahara J., Nakamury A., Kühn H., Niki E. Thespecificity of lipoxygenase-catalyzed lipid peroxidation and the effects of radicalscavenging antioxidants // Biol. Chem.
2002. V. 383. P. 619–626.240.Berry H., Débat H., Larreta-Garde V. Oxygen concentration determinesregiospecificity in soybean lipoxygenase-1 reaction via a branched kineticscheme // J. Biol. Chem. 1998. V. 273. P. 2769–2776.241.Ivanov I., Kuhn H., Saam J., Holzhutter H.-G. Dual role of oxygen duringlipoxygenase reactions // FEBS J. 2005, V.
272. P. 2523-2535.242.Ludwig P., Holzhuütter H.-G, Colosimo A., Silvestrini Ch., Schewe T., RapoportS.M. A kinetic model for lipoxygenases based on experimental data with thelipoxygenase of reticulocytes // Eur. J. Biochem.1987. V. 168. P. 325–337.243.Schilstra M.J., Veldink G.A., Vliegenthart J,F, The dioxygenation rate inlipoxygenase catalysis is determined by the amount of iron (III) lipoxygenase insolution // Biochemistry 1994. V. 33. P. 3974–3979.244.de Groot J.J., Garssen G.J., Veldink G.A., Vliegenthart J..F Boldingh J. On theinteraction of soybean lipoxygenase-1 and 13-L-hydroperoxylinoleic acid,involving yellow and purple coloured enzyme species // FEBS Lett. 1975. V.
56.P. 50–54.245.Chamulitrat W., Hughes M.F., Eling T.E., Mason R.P. Superoxide and peroxylradical generation from the reduction of polyunsaturated fatty acid hydroperoxidesby soybean lipoxygenase // Arch. Biochem. Biophys. 1991. V. 1. P. 153–159.246.Nelson M.J., Seitz S.P. The structure and function of lipoxygenase // Curr. Opin.Struct. Biol. 1994. V. 4. P. 878–884.247.Lario P.I., Sampson N., Vrielink A.
Sub-atomic resolution crystal structure ofcholesterol oxidase: what atomic resolution crystallography reveals about enzyme226mechanism and the role of the FAD cofactor in redox activity // J. Mol. Biol. 2003.V. 326, P. 1635–1650.248.Koutsoupakis K., Stavrakis S., Soulimane T., Varotsis C. Oxygen-linkedequilibrium CuB-CO species in cytochrome ba3 oxidase from thermusthermophilus.
Implications for an oxygen channel ar the CuB site // J. Biol. Chem.2003. V. 278. P. 14893–14896.249.Brunori M., Cutruzzola F., Savino C., Travaglini-Allocatelli C., Vallone B., GibsonQ.H. Structural dynamics of ligand diffusion in the protein matrix: A study on anew myoglobin mutant Y(B10) Q(E7) R(E10) // Biophys. J. 1999. V. 76. P. 1259–1269.250.Cohen J., Arkhipov A., Braun R., Schulten K.