lect-terver (1082434), страница 5
Текст из файла (страница 5)
Áîðåëåâñêàÿ σ-àëãåáðà â Rn ñòðîèòñÿ ñîâåðøåííî òàê æå, êàê â R. Ýòî äîëæíàáûòü ìèíèìàëüíàÿ σ-àëãåáðà, ñîäåðæàùàÿ âñå ìíîæåñòâà âèäà (a1 , b1 ) × . . . × (an , bn )(óæå íå èíòåðâàëû, êàê â R, à «ïðÿìîóãîëüíèêè» â R2 , «ïàðàëëåëåïèïåäû» â R3è ò. ä.).18Ìåðà ËåáåãàÊîãäà ìû ãîâîðèëè î ãåîìåòðè÷åñêîé âåðîÿòíîñòè, ìû èñïîëüçîâàëè òåðìèí «ìåðàîáëàñòè A â Rm », èìåÿ ââèäó «äëèíó» íà ïðÿìîé, «ïëîùàäü» íà ïëîñêîñòè, «îáúåì» âòðåõìåðíîì ïðîñòðàíñòâå. ßâëÿþòñÿ ëè âñå ýòè «äëèíû-ïëîùàäè-îáúåìû» íàñòîÿùèìè ìåðàìè â ñìûñëå îïðåäåëåíèÿ 11? Ìû ðåøèì ýòîò âîïðîñ äëÿ ïðÿìîé, îñòàâëÿÿïëîñêîñòü è ïðîñòðàíñòâî áîëüøåé ðàçìåðíîñòè ÷èòàòåëþ.Если вам уже расхотелось читать дальше, сообщаем: мерой Лебега в задачниках иучебниках называют как раз «длину-площадь-объем», так что все в порядке.Ðàññìîòðèì âåùåñòâåííóþ ïðÿìóþ ñ σ-àëãåáðîé áîðåëåâñêèõ ìíîæåñòâ.
Ýòà σàëãåáðà, ïî îïðåäåëåíèþ, åñòü íàèìåíüøàÿ σ-àëãåáðà, ñîäåðæàùàÿ ëþáûå èíòåðâàëû.Äëÿ êàæäîãî èíòåðâàëà (a, b) ⊂ R ÷èñëî b − a íàçîâåì «äëèíîé èíòåðâàëà (a, b)». Ìû íåñòàíåì äîêàçûâàòü ñëåäóþùåå óòâåðæäåíèå:Ëåììà 1.Ñóùåñòâóåò åäèíñòâåííàÿ мера(òî åñòüíåîòðèöàòåëüíàÿ èσ-àääèòèâíàÿ ôóíêöèÿ) λ íà (R, B), çíà÷åíèå êîòîðîé íà ëþáîì èíòåðâàëå ðàâíî åãîäëèíå: λ (a, b) = b − a. Ýòà ìåðà íàçûâàåòñÿ мерой Лебега.Это утверждение является следствием теоремы Каратеодори о продолжении меры салгебры на σ-алгебру, применительно к (R, B). См. А.Н.Колмогоров, С.В.Фомин, Функциональный анализ или А.А.Боровков, Теория вероятностей.Èòàê, ìû îãðàíè÷èëè íàáîð ñîáûòèé òîëüêî ìíîæåñòâàìè èç êàêîé-íèáóäü σ-àëãåáðûñîáûòèé. Ìû ïîòðåáîâàëè, ÷òîáû âåðîÿòíîñòü áûëà ôóíêöèåé только íà ìíîæåñòâå ñîáûòèé.
Ïîêàæåì, ÷òî ýòî íåîáõîäèìî: ïîñòðîèì ïðèìåð ìíîæåñòâà íà îòðåçêå, ìåðàËåáåãà êîòîðîãî («äëèíà») ïðîñòî íå ñóùåñòâóåò (ìíîæåñòâî Âèòàëè).То есть: если рассмотреть бросание точки наудачу на отрезок, то вычислить вероятность попадания точки в указанное множество в соответствии с геометрическойвероятностью нельзя. Значит, это множество нельзя считать событием — мы неумеем вычислить его вероятность!Ïðèìåð 14. Ðàññìîòðèì îêðóæíîñòü åäèíè÷íîãî ðàäèóñà (ðåàëüíî ýòî òîò æå îòðåçîê [0, 2π]). Âîçüìåì ëþáîå èððàöèîíàëüíîå ÷èñëî α. Ïîñêîëüêó îíî èððàöèîíàëüíî,÷èñëî nα íå ÿâëÿåòñÿ öåëûì íè ïðè êàêîì öåëîì n 6= 0 (òî åñòü ÷èñëî 2πnα ðàâíî 2πkαëèøü ïðè n = k).Ïîýòîìó åñëè âçÿòü ïðîèçâîëüíóþ òî÷êó x ∈ [0, 2π], òî åñòü òî÷êó íà îêðóæíîñòè,è ïåðå÷èñëèòü âñå òî÷êè, êîòîðûå ïîëó÷àþòñÿ ïîâîðîòîì òî÷êè x íà óãîë 2πnα, n =±1, ±2, .
. . , òî ìû íè ðàçó íå âåðíåìñÿ â òî÷êó x. Òî÷åê, ïîëó÷èâøèõñÿ èç òî÷êè x òàêèìè ïîâîðîòàìè, ñ÷åòíîå ÷èñëî. Îáúåäèíèì èõ â îäèí êëàññ. Ñ ëþáîé äðóãîé òî÷êîéîêðóæíîñòè ìîæíî òîæå ñâÿçàòü êëàññ òî÷åê, ïîëó÷àþùèõñÿ èç íåå ïîâîðîòîì íà óãîë2πnα ïðè êàêîì-òî n ∈ Z.То есть вся окружность разбивается на классы точек. В каждом классе счетное числоточек, и все точки в одном классе получаются друг из друга такими поворотами. Причемэти классы не пересекаются.Ìíîæåñòâî A0 îïðåäåëèì òàê: âîçüìåì èç êàæäîãî òàêîãî êëàññà ðîâíî ïî îäíîéòî÷êå. Ïóñòü ìíîæåñòâî An ïîëó÷àåòñÿ ïîâîðîòîì âñåõ òî÷åê ìíîæåñòâà A0 íà óãîë2πnα, n = ±1, ±2, . . . .Так как все точки одного класса можно получить, поворачивая любую из них на угол2πnα, n = ±1, ±2, .
. . , а в множестве A0 собрано по одной точке из каждого класса, топоворачивая это множество, получим все точки окружности.19Î÷åâèäíî, ÷òî∞SAn = [0, 2π]. Ïðåäïîëîæèì, ÷òî ëåáåãîâà ìåðà («äëèíà») ìíîæå-n=−∞ñòâà A0 ñóùåñòâóåò. Çàìåòèì, ÷òî òîãäà âñå ìíîæåñòâà An èìåþò òó æå ëåáåãîâó ìåðó,òàê êàê ïîëó÷åíû èç A0 ïîâîðîòîì.
È òàê êàê âñå ýòè ìíîæåñòâà íå ïåðåñåêàþòñÿ, òîìåðà èõ îáúåäèíåíèÿ ðàâíà ñóììå èõ ìåð:!∞∞∞[XX2π = λAn =λ(An ) =λ(A0 ) = ∞.n=−∞n=−∞n=−∞Ïîëó÷åííîå ïðîòèâîðå÷èå îçíà÷àåò, ÷òî ëåáåãîâà ìåðà, èëè äëèíà ìíîæåñòâà A0 не существует.Упражнение: какими свойствами «длины» (или меры Лебега) мы воспользовались в этомпримере?20Ðàçäåë 4.4.1Óñëîâíàÿ âåðîÿòíîñòü, íåçàâèñèìîñòüÓñëîâíàÿ âåðîÿòíîñòüÏðèìåð 15.
Êóáèê ïîäáðàñûâàåòñÿ îäèí ðàç. Èçâåñòíî, ÷òî âûïàëî áîëåå òðåõ î÷êîâ. Êàêîâà ïðè ýòîì âåðîÿòíîñòü òîãî, ÷òî âûïàëî ÷åòíîå ÷èñëî î÷êîâ? äàííîì ñëó÷àå ïðîñòðàíñòâî ýëåìåíòàðíûõ èñõîäîâ ñîñòîèò èç òðåõ ðàâíîâîçìîæíûõ ýëåìåíòàðíûõ èñõîäîâ: Ω = {4, 5, 6}, è ñîáûòèþ A = {âûïàëî ÷åòíîå ÷èñëî î÷êîâ}áëàãîïðèÿòñòâóþò 2 èç íèõ: A = {4, 6}. Ïîýòîìó P(A) = 2/3.Ïîñìîòðèì íà ýòîò âîïðîñ ñ òî÷êè çðåíèÿ ïåðâîíà÷àëüíîãî ýêñïåðèìåíòà. Ïðîñòðàíñòâî ýëåìåíòàðíûõ èñõîäîâ ïðè îäíîì ïîäáðàñûâàíèè êóáèêà ñîñòîèò èç øåñòèòî÷åê: Ω = {1, 2, 3, 4, 5, 6}.
Ñëîâà «èçâåñòíî, ÷òî âûïàëî áîëåå òðåõ î÷êîâ» îçíà÷àþò,÷òî â ýêñïåðèìåíòå ïðîèçîøëî ñîáûòèå B = {4, 5, 6}. Ñëîâà «êàêîâà ïðè ýòîì âåðîÿòíîñòü òîãî, ÷òî âûïàëî ÷åòíîå ÷èñëî î÷êîâ?» îçíà÷àþò, ÷òî íàñ èíòåðåñóåò, â êàêîéäîëå ñëó÷àåâ ïðè îñóùåñòâëåíèè B ïðîèñõîäèò è A. Âåðîÿòíîñòü ñîáûòèÿ A, âû÷èñëåííóþ â ïðåäïîëîæåíèè, ÷òî íå÷òî î ðåçóëüòàòå ýêñïåðèìåíòà óæå èçâåñòíî (ñîáûòèå Bïðîèçîøëî), ìû áóäåì îáîçíà÷àòü ÷åðåç P(AB).Ìû õîòèì âû÷èñëèòü îòíîøåíèå ÷èñëà èñõîäîâ, áëàãîïðèÿòñòâóþùèõ A âíóòðè B(òî åñòü áëàãîïðèÿòñòâóþùèõ îäíîâðåìåííî A è B), ê ÷èñëó èñõîäîâ, áëàãîïðèÿòñòâóþùèõ B.2/6P(A ∩ B)2=.P(AB) = =33/6P(B)AКакое отношение требуется вычислить, если элементарные исходы не являются равновозможными?@ @@ @@ A∩B@@ @@@@@@ @@@@@@ B@ @@ @Îïðåäåëåíèå 15.
Óñëîâíîé âåðîÿòíîñòüþ ñîáûòèÿ A, ïðè óñëîâèè, ÷òî ïðîèçîøëîñîáûòèå B, íàçûâàåòñÿ ÷èñëîP(A ∩ B).P(AB) =P(B)Áóäåì ñ÷èòàòü, ÷òî óñëîâíàÿ âåðîÿòíîñòü îïðåäåëåíà òîëüêî â ñëó÷àå, êîãäà P(B) > 0.Ñëåäóþùåå ñâîéñòâî íàçûâàåòñÿ "òåîðåìîé óìíîæåíèÿ":Òåîðåìà 6. P(A ∩ B) = P(B)P(AB) = P(A)P(B A), åñëè ñîîòâåòñòâóþùèå óñëîâíûåâåðîÿòíîñòè îïðåäåëåíû (òî åñòü åñëè P(B) > 0, P(A) > 0).Òåîðåìà óìíîæåíèÿ äëÿ áîëüøåãî ÷èñëà ñîáûòèé:Òåîðåìà 7.
P(A1 ∩ A2 ∩ . . . ∩ An ) = P(A1 )P(A2 A1 )P(A3 A1 ∩ A2 ) · . . . · P(An A1 ∩ . . . ∩ An−1 ),åñëè ñîîòâåòñòâóþùèå óñëîâíûå âåðîÿòíîñòè îïðåäåëåíû.Доказать теорему 7 методом математической индукции.4.2ÍåçàâèñèìîñòüÎïðåäåëåíèå 16. Ñîáûòèÿ A è B íàçûâàþòñÿ независимыми, åñëèP(A ∩ B) = P(A)P(B).21Ïðèìåð 16.1. Òî÷êà ñ êîîðäèíàòàìè ξ, η áðîñàåòñÿ íàóäà÷ó â êâàäðàò ñî ñòîðîíîé 1. Äîêàçàòü,÷òî äëÿ ëþáûõ x, y ∈ R ñîáûòèÿ A = {ξ < x} è B = {η < y} íåçàâèñèìû.2. Òî÷êà ñ êîîðäèíàòàìè ξ, η áðîñàåòñÿ íàóäà÷ó â òðåóãîëüíèê ñ âåðøèíàìè (1,0),(0,0) è (0,1).
Äîêàçàòü, ÷òî ñîáûòèÿ A = {ξ < 1/2} è B = {η < 1/2} çàâèñèìû.η1η61y6@@@12x@@@@@@ --1ξ121ξ1. Ðàññìîòðèì x, y ∈ [0, 1] (разобрать остальные случаи). Âèäèì, ÷òî P(A) = x,P(B) = y, P(A ∩ B) = x · y, òàê ÷òî ñîáûòèÿ A = {ξ < x} è B = {η < y} íåçàâèñèìû.2. Íà ðèñóíêå ñîáûòèå A çàøòðèõîâàíî çåëåíûì, ñîáûòèå B — ñèíèì. Âèäèì,÷òî P(A) = 3/4, P(B) = 3/4, P(A ∩ B) = 1/2 6= (3/4)2 , òàê ÷òî ñîáûòèÿ A = {ξ < 1/2} èB = {η < 1/2} çàâèñèìû.Доказать, что при x 6∈ [0, 1] или y 6∈ [0, 1] события A = {ξ < x} и B = {η < y} независимы.Çàìå÷àíèå 7.
Åñëè ñîáûòèÿ A è B íåñîâìåñòíû, òî îíè íåçàâèñèìû, åñëè è òîëüêîåñëè P(A) = 0 èëè P(B) = 0.Доказать!!B) = P(A).Ñëåäñòâèå 2. Åñëè P(B) > 0, òî ñîáûòèÿ A è B íåçàâèñèìû⇐⇒P(AÅñëè P(A) > 0, òî ñîáûòèÿ A è B íåçàâèñèìû ⇐⇒ P(B A) = P(B).Доказать следствие, пользуясь определением условной вероятности.Ëåììà 2.A è B, A è B.Åñëè ñîáûòèÿ A è B íåçàâèñèìû, òî íåçàâèñèìû è ñîáûòèÿ A è B,SÄîêàçàòåëüñòâî. Òàê êàê A = A∩B A∩B, è ñîáûòèÿ A∩B è A∩B íåñîâìåñòíû,òî P(A) = P(A∩B) + P(A∩B). Ïîýòîìó P(A∩B) = P(A) − P(A∩B) = P(A) − P(A)P(B) =P(A)(1 − P(B)) = P(A)P(B).Вывести отсюда все остальные утверждения.Îïðåäåëåíèå 17. Ñîáûòèÿ A1 , . . . , An íàçûâàþòñÿ независимыми в совокупности, åñëè äëÿ ëþáîãî íàáîðà 1 6 i1 , .
. . , ik 6 nP(Ai1 ∩ . . . ∩ Aik ) = P(Ai1 ) . . . P(Aik ).(6)Çàìå÷àíèå 8. Åñëè ñîáûòèÿ A1 , . . . , An íåçàâèñèìû â ñîâîêóïíîñòè, òî îíè ïîïàðíîíåçàâèñèìû, òî åñòü ëþáûå äâà ñîáûòèÿ Ai , Aj íåçàâèñèìû. Äîñòàòî÷íî â ðàâåíñòâå (6)âçÿòü k = 2. Îáðàòíîå, êàê ïîêàçûâàåò ñëåäóþùèé ïðèìåð, íåâåðíî.Ïðèìåð 17 (Ïðèìåð Ñ. Í. Áåðíøòåéíà).Ðàññìîòðèì ïðàâèëüíûé òåòðàýäð, 3 ãðàíè êîòîðîãî îêðàøåíû, ñîîòâåòñòâåííî, âêðàñíûé, ñèíèé, çåëåíûé öâåòà, à ÷åòâåðòàÿ ãðàíü ñîäåðæèò âñå òðè öâåòà. Ñîáûòèå A(B, C) îçíà÷àåò, ÷òî âûïàëà ãðàíü, ñîäåðæàùàÿ êðàñíûé (ñèíèé, çåëåíûé) öâåòà.Âåðîÿòíîñòü êàæäîãî èç ýòèõ ñîáûòèé ðàâíà 1/2, òàê êàê êàæäûé öâåò åñòü íà äâóõãðàíÿõ èç ÷åòûðåõ. Âåðîÿòíîñòü ïåðåñå÷åíèÿ ëþáûõ äâóõ èç íèõ ðàâíà 1/4, òàê êàê22òîëüêî îäíà ãðàíü ñîäåðæèò äâà öâåòà. À òàê êàê 1/4 = 1/2 · 1/2, òî âñå ñîáûòèÿ ïîïàðíîíåçàâèñèìû.Íî âåðîÿòíîñòü ïåðåñå÷åíèÿ âñåõ òðåõ òîæå ðàâíà 1/4, à íå 1/8, òî åñòü ñîáûòèÿ íåÿâëÿþòñÿ íåçàâèñèìûìè â ñîâîêóïíîñòè.Çàìåòüòå, ÷òî ðàâåíñòâî (6) âûïîëíåíî äëÿ k = 2, íî íå âûïîëíåíî äëÿ k = 3.4.3Ôîðìóëà ïîëíîé âåðîÿòíîñòèÏðèìåð 18.