Билет7 (1080645)

Файл №1080645 Билет7 (Билеты, ответы и шпоры на экзамен в одном флаконе (ИУ5))Билет7 (1080645)2018-01-11СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

Билет№7

ОПР.Декартова система координат – пара, состоящая из фиксированной точки О и некоторого базиса. Соответственно трем пространствам V1, V2, V3 получаем три варианта декартовой системы координат: на прямой, на плоскости, в пространстве.

Понятия:

- начало координат – точка О в составе декартовой системы координат;

- репер – базис в составе декартовой системы координат;

- оси координат – прямые на которых лежат векторы репера, задающие направления на этих прямых. Оси имеют названия: ось абсцисс, ось ординат, ось аппликат.

- координатные плоскости – плоскости, определяемые парами векторов репера.

- радиус-вектор точки М – вектор ОМ, соединяющий начало координат с этой точкой.

Декартову систему координат еще называют косоугольной системой координат.

Если репер декартовой системы координат явл ортонормированным базисом, то такую систему координат называют декартовой прямоугольной системой координат, или просто прямоугольной системой координат, а декартовы координаты точки – ее прямоугольными координатами.

Базис в V2 называется правым, если его первый вектор совмещается со вторым кратчайшим поворотом против хода часовой стрелки.

  • ОПР. Система m линейных уравнений с n неизвестными (СЛАУ) в линейной алгебре — это система уравнений вида

(Координатная форма.)

Уравнение системы называют алгебраическими потому, что левая часть каджого из них есть многочлен от n переменных x1,…,xn,а линейными потому что многочлены имеют первую степень. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Решением СЛАУ называются значения x1,…,xn,при подстановке которых каждое уравнение системы превращается в тождество. СЛАУ называется совместной если она имеет какие-л. решения. В обратном случае ее называют несовместной. Однордная СЛАУ всегда совместна.

( матричная форма)


(Решение СЛАУ можно трактовать в виде линейной комбинации столбцов)

x1a1+…+xnan=b (векторная запись)

  • Теорема о структуре общего решения СЛАУ. Если x(1),x(2),…x(s) – произвольная фундаментальная система решений однородной СЛАУ. Ax=0, то любое её решение x можно предст. в виде x=с1x(1)+…+ckx(k), где с1….сn – некоторые постоянные. Соотношение называют общим решением однородной СЛАУ.

ДОК. Пусть некоторое решение однор. СЛАУ Ax=0 имеет вид (1) Пусть базисный минор матрицы А сосредоточен в верхнем левом углу, тогда рассматриваемая однородная СЛАУ имеет те же решения, что и система


(1)

Которую можно записать в виде

Эта система имеет невырожденную матрицу, так как ее определитель совпадает с базисным минором матрицы А исходной СЛАУ.Решая систему относительно базисных неизвестных (например с помощью формул Крамера) получаем соотношения


Запишем ФСР в координатной форме


Затем составим из столбцов матрицу


Последние k столбцов образуют ФСР и по определению линейно независимы, а так как ранг матрицы равен максимальному числу линейно независимых столбцов, то RgB>=k.

Покажем что RgB=<k. Так как столбцы матрицы В явл. Решением системыAx=0, их элементы удовл. соотнош., т.е.


(2)

Где .Вычтем из первой строки матрицы В линейную комбинацию последних k=n-r строк с коэффициентами α1,r+1,…,α1n. Тогда согласно первому равенству из (2) в результате этих преобразований мы получим матрицу у кот. Первые r строк нулевые. Т.к. при этом ранг матрицы не меняется RgB=<n-r=k. Поскольку RgB=k, а последние k столбцов матрицы В линейно независимы, тро, согласно теореме о линейно независимых базисных сроках(столбцах) они явл. Базисными, =>первый столбец x по теорему о базисном миноре, явл их линейной комбинацией. Это значит что сущ. такие постоянные , что выполнено равенство (1)

Характеристики

Тип файла документ

Документы такого типа открываются такими программами, как Microsoft Office Word на компьютерах Windows, Apple Pages на компьютерах Mac, Open Office - бесплатная альтернатива на различных платформах, в том числе Linux. Наиболее простым и современным решением будут Google документы, так как открываются онлайн без скачивания прямо в браузере на любой платформе. Существуют российские качественные аналоги, например от Яндекса.

Будьте внимательны на мобильных устройствах, так как там используются упрощённый функционал даже в официальном приложении от Microsoft, поэтому для просмотра скачивайте PDF-версию. А если нужно редактировать файл, то используйте оригинальный файл.

Файлы такого типа обычно разбиты на страницы, а текст может быть форматированным (жирный, курсив, выбор шрифта, таблицы и т.п.), а также в него можно добавлять изображения. Формат идеально подходит для рефератов, докладов и РПЗ курсовых проектов, которые необходимо распечатать. Кстати перед печатью также сохраняйте файл в PDF, так как принтер может начудить со шрифтами.

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6510
Авторов
на СтудИзбе
302
Средний доход
с одного платного файла
Обучение Подробнее