Главная » Просмотр файлов » Кратные и криволинейные интегралы

Кратные и криволинейные интегралы (1021366)

Файл №1021366 Кратные и криволинейные интегралы (Кратные и криволинейные интегралы)Кратные и криволинейные интегралы (1021366)2017-07-10СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯМосковский государственный университетприборостроения и информатикикафедра высшей математикиКРАТНЫЕ И КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫучебное пособие для студентов.Москва 20062УДК 517.Кратные и криволинейные интегралы. Учебное пособие для студентов. Сост.:к.ф-м.н., доц.. Загинайко В.А. ./МГУПИ. М.

2006.Излагаются теория и применение криволинейных и кратныхинтегралов. Приведены примеры решения задач.Пособие предназначено для студентов, обучающихся по дневнойформе обучения. Библиогр: 3.Рецензент: д.ф.-м.н., проф. Соколов В.В.1Введение.Предлагаемое пособие состоит из двух частей. Первая часть содержитэлементарную теорию кратных и криволинейных интегралов с примерами вычислений.Объём материала здесь примерно соответствует программе соответствующих разделовкурса высшей математики технических вузов. Во второй части более углублённорассматривается понятие измеримости площади и объёма по Риману и по Лебегу, а такжедаётся понятие площади двумерной поверхности по Лебегу как нижнего пределаплощадей триангуляций графика функции двух переменных, непрерывных вместе сосвоими частными производными.В первой части последовательно рассматривается ориентация простейших фигур(треугольника, тетраэдра) в одномерном, двумерном, трёхмерном и многомерном случаях.Ориентация составной фигуры определяется как согласованная ориентация её частей.При вычислении площади и объёма этих фигур используется геометрическоепонятие определителя как ориентированной площади или объёма, натянутого на пару илитройку векторов.

Геометрически двукратный интеграл определяется как ориентированныйобъём кривоповерхностного цилиндра по аналогии с классическим определениемопределённого интеграла как ориентированной площади криволинейной трапеции.Площадь или объём рассматриваются классическим способом как предел ступенчатыхфигур, приближающих эту площадь или объём.

Разбираются решения типичныхконтрольных заданий на соответствующую тему. Даётся пример взятия кратногоинтеграла машинным (компьютерным) способом.Особенностью первой части данного пособия является попытка «осовременить»изложение поверхностных интегралов второго рода. Известные теоремы Лейбница –Ньютона, Грина, Стокса и Остроградского – Гаусса рассматриваются как частные случаиобщего утверждения Пуанкаре о связи интеграла по объёму с интегралом по поверхностикак топологической границы этого объёма. Указанное утверждение можно рассматривать(как минимум) в качестве мнемонического правила для запоминания упомянутой сериитеорем.Отмечается (на примерах), что при вычислении, в частности, поверхностныхинтегралов необходимо внимательно следить за ориентацией фигуры для правильнойрасстановки пределов при замене кратного интеграла на повторный.Во второй части пособия рассматриваются классические понятия измеримости поРиману и по Лебегу.

Даётся схема доказательства интегрируемости непрерывной функциипо Риману. Рассматривается критерий интегрируемости по Риману как нулевое значениемеры Лебега для множества точек разрыва подынтегральной функции.Проводится схема доказательства существования площади поверхности по Лебегудля гладкой (то есть непрерывной вместе со своими частными производными) функциидвух переменных, и доказывается, что эта площадь равна кратному интегралуопределённого вида.

При этом площадь поверхности по Лебегу рассматривается какпредел нижних граней площадей триангуляций для поверхности графикаподынтегральной функции, мелкость разбиения которых не превосходит заданнуювеличину.Автор надеется, что данное пособие будет способствовать повышениютеоретического понимания понятий ориентации, площади и объёма как фундаментальныхматематических понятий. Кроме того, это пособие может рассматриваться кактеоретическое приложение к руководствам по решению задач по теме: «криволинейные икратные интегралы» тем более, что оно содержит методические указания по решениюконтрольных заданий по соответствующей теме.13Кратные и криволинейные интегралы.Введение.Предлагаемое пособие состоит из двух частей.

Первая часть содержитэлементарную теорию кратных и криволинейных интегралов с примерами вычислений.Объём материала здесь примерно соответствует программе соответствующих разделовкурса высшей математики технических вузов. Во второй части более углублённорассматривается понятие измеримости площади и объёма по Риману и по Лебегу, атакже даётся понятие площади двумерной поверхности по Лебегу как нижнего пределаплощадей триангуляций графика функции двух переменных, непрерывных вместе сосвоими частными производными.В первой части последовательно рассматривается ориентация простейших фигур(треугольника, тетраэдра) в одномерном, двумерном, трёхмерном и многомерномслучаях.

Ориентация составной фигуры определяется как согласованная ориентация еёчастей.При вычислении площади и объёма этих фигур используется геометрическоепонятие определителя как ориентированной площади или объёма, натянутого на паруили тройку векторов. Геометрически двукратный интеграл определяется какориентированный объём кривоповерхностного цилиндра по аналогии с классическимопределением определённого интеграла как ориентированной площади криволинейнойтрапеции. Площадь или объём рассматриваются классическим способом как пределступенчатых фигур, приближающих эту площадь или объём. Разбираются решениятипичных контрольных заданий на соответствующую тему.

Даётся пример взятиякратного интеграла машинным (компьютерным) способом.Особенностью первой части данного пособия является попытка «осовременить»изложение поверхностных интегралов второго рода. Известные теоремы Лейбница –Ньютона, Грина, Стокса и Остроградского – Гаусса рассматриваются как частныеслучаи общего утверждения Пуанкаре о связи интеграла по объёму с интегралом поповерхности как топологической границы этого объёма.

Указанное утверждение можнорассматривать (как минимум) в качестве мнемонического правила для запоминанияупомянутой серии теорем.Отмечается (на примерах), что при вычислении, в частности, поверхностныхинтегралов необходимо внимательно следить за ориентацией фигуры для правильнойрасстановки пределов при замене кратного интеграла на повторный.Во второй части пособия рассматриваются классические понятия измеримостипо Риману и по Лебегу. Даётся схема доказательства интегрируемости непрерывнойфункции по Риману. Рассматривается критерий интегрируемости по Риману какнулевое значение меры Лебега для множества точек разрыва подынтегральнойфункции.Проводится схема доказательства существования площади поверхности поЛебегу для гладкой (то есть непрерывной вместе со своими частными производными)функции двух переменных, и доказывается, что эта площадь равна кратному интегралуопределённого вида.

При этом площадь поверхности по Лебегу рассматривается какпредел нижних граней площадей триангуляций для поверхности графикаподынтегральной функции, мелкость разбиения которых не превосходит заданнуювеличину.Автор надеется, что данное пособие будет способствовать повышениютеоретического понимания понятий ориентации, площади и объёма как34фундаментальных математических понятий. Кроме того, это пособие можетрассматриваться как теоретическое приложение к руководствам по решению задач потеме: «криволинейные и кратные интегралы» тем более, что оно содержитметодические указания по решению контрольных заданий по соответствующей теме.§1Ориентация.Прежде чем рассматривать кратные и криволинейные интегралы необходиморассмотреть лежащее в их основе понятие ориентации.Ориентация является одним из важнейших понятий топологии.

Рассмотримпоследовательно это понятие в одномерном, двумерном, трёхмерном и многомерномслучаях.1.Ориентация в одномерном случае ( n = 1 , где n - размерность пространства).Ориентация на заданной прямой определяет направление движения по прямой (влево –вправо, если прямая горизонтальна, вверх – вниз, если прямая вертикальна или отправого нижнего к правому верхнему углу квадрата, если прямая параллельнадиагонали квадрата, расположенного под углом в 450 к его горизонтальной стороне).Использование этого понятия.Определим с помощью этого понятия геометрический (свободный) вектор.Определение. Геометрический вектор определяется тремя параметрами: модулем,направлением и ориентацией.Модуль вектора есть его длина.

Если геометрический вектор представить в видестрелки, то его длина есть расстояние между началом стрелки и её концом.Направление вектора определяется множеством прямых, параллельных вектору.Таким образом (согласно данному определению) два вектора имеют одинаковоенаправление, если стрелки, геометрически представляющие эти вектора, параллельны,хотя, конечно, трудно назвать в обыденном смысле этого слова стрелки, лежащие наодной прямой и направленные в разные стороны однонаправленными. И, тем не менее,будем придерживаться этого определения.

Может быть, вместо термина «направлениевектора» в нашем смысле лучше было бы использовать термин «параллельностьвектора».Ориентация вектора. Будем считать, что два вектора имеют одинаковуюориентацию, если они имеют одинаковое направление (то есть, параллельны междусобой) и направлены в одну и ту же сторону.

Характеристики

Тип файла
PDF-файл
Размер
1,75 Mb
Тип материала
Высшее учебное заведение

Тип файла PDF

PDF-формат наиболее широко используется для просмотра любого типа файлов на любом устройстве. В него можно сохранить документ, таблицы, презентацию, текст, чертежи, вычисления, графики и всё остальное, что можно показать на экране любого устройства. Именно его лучше всего использовать для печати.

Например, если Вам нужно распечатать чертёж из автокада, Вы сохраните чертёж на флешку, но будет ли автокад в пункте печати? А если будет, то нужная версия с нужными библиотеками? Именно для этого и нужен формат PDF - в нём точно будет показано верно вне зависимости от того, в какой программе создали PDF-файл и есть ли нужная программа для его просмотра.

Список файлов книги

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6458
Авторов
на СтудИзбе
305
Средний доход
с одного платного файла
Обучение Подробнее