Главная » Все файлы » Просмотр файлов из архивов » PDF-файлы » М.Г. Иванов - Как понимать квантовую механику

М.Г. Иванов - Как понимать квантовую механику, страница 36

PDF-файл М.Г. Иванов - Как понимать квантовую механику, страница 36 Квантовые вычисления (53188): Книга - 7 семестрМ.Г. Иванов - Как понимать квантовую механику: Квантовые вычисления - PDF, страница 36 (53188) - СтудИзба2019-09-18СтудИзба

Описание файла

PDF-файл из архива "М.Г. Иванов - Как понимать квантовую механику", который расположен в категории "". Всё это находится в предмете "квантовые вычисления" из 7 семестр, которые можно найти в файловом архиве МГУ им. Ломоносова. Не смотря на прямую связь этого архива с МГУ им. Ломоносова, его также можно найти и в других разделах. .

Просмотр PDF-файла онлайн

Текст 36 страницы из PDF

Функции ψ+ и ψ− совпадают с ψ0 в об2ластях положительного (отрицательного) знака и тождественно равны нулю в областях противоположного знака. Существование отличных от нуляволновых функций, для которых в какой-то точке ψ(x0 ) = ψ (x0 ) = 0, нарушает условия существования и единственности решения стационарного5 Комплексноесопряжение не пишем, т. к. волновая функция вещественна.6.2. О СЦИЛЛЯТОРНАЯТЕОРЕМА179уравнения Шрёдингера6 , так что предположение о линейной независимостиψ0 и ψ1 не выполняется и мы приходим к выводу, что основное состояниеодномерной системы с периодическими граничными условиями вообще неимеет нулей.Основное состояние должно быть невырожденным, т. к.

две функции, имеющие постоянный знак в одинаковой области (в силуусловия единственности), не могут быть ортогональны друг другу.6.2.3. Вронскиан (л*)Удобным инструментом для исследова- Рис. 6.4. Юзеф Вроньскийния зависимости решений дифференциального (1776–1853). [1897 г. Felix Valloton. W]уравнения является вронскиан (определитель Вроньского), введённый Юзефом Вроньским.Поскольку мы изучаем дифференциальные уравнения второго порядка,то и вронскиан нам понадобится второго порядка:ψ ψ W [ψ1 , ψ2 ] = 1 2 = ψ1 ψ2 − ψ2 ψ1 .(6.12)ψ1 ψ2Если вронскиан обратился в ноль в точке x, это означает, что значенияфункций и их первых производных в точке x пропорциональны друг другу.Для дифференциального уравнения второго порядка, зная функцию и еёпроизводную в точке x, мы можем поставить задачу Коши и найти значенияфункции на всей оси. Таким образом, если ψ1 и ψ2 являются решениямиуравнений Шрёдингера для одного и того же потенциала и для одной и тойже энергии, то (в силу того, что уравнения линейные, однородные, второгопорядка) если вронскиан равен нулю в одной точке W [ψ1 , ψ2 ](x) = 0, то онравен нулю всюду и функции ψ1 и ψ2 пропорциональны друг другу.Докажем более общее утверждение, описывающее зависимость вронскиана от координаты для двух функций, являющихся решениями стационарного уравнения Шрёдингера:W [ψ1 , ψ2 ] = ψ1 ψ2 − ψ2 ψ1 =21= ψ1 2m(U2 (x) − E2 )ψ2 − ψ2 2m(U1 (x) − E1 )ψ1 =h̄2h̄2= ψ1 ψ22h̄2[m2 (U2 (x) − E2 ) − m1 (U1 (x) − E1 )].6 Нарушение условий единственности упоминалось как один из примеров выше(см.

6.2.1 «Об области применимости теоремы*»).180ГЛАВА 6Если m1 = m2 = m и U1 (x) = U2 (x), то соотношение упрощается:W [ψ1 , ψ2 ] = ψ1 ψ22mh̄2[E1 − E2 ].(6.13)Проинтегрировав формулы (6.13), получаемW [ψ1 , ψ2 ](x1 ) − W [ψ1 , ψ2 ](x0 ) =2mh̄2x1[E1 − E2 ]ψ1 (x)ψ2 (x) dx. (6.14)x06.2.4. Рост числа нулей с номером уровня*Применим формулу (6.14) для изменения вронскиана к двум последовательным нулям x0 < x1 дискретного стационарного состояния ψ1 с энергией E1 . Второе состояние ψ2 пусть также будет дискретным собственнымс энергией E2 > E1 .Функции ψ1 (x) и ψ2 (x) возьмём вещественные, причём выберем такойзнак, чтобы ψ1 (x) > 0 при x ∈ (x0 , x1 ).0000 [ψ1 (x1 ) ψ2 (x1 ) − ψ2 (x1 ) ψ1 (x1 )] − [ψ1 (x0 ) ψ2 (x0 ) − ψ2 (x0 ) ψ1 (x0 )] = W [ψ1 ,ψ2 ](x1 )0W [ψ1 ,ψ2 ](x0 )0 x1 2m= ψ2 (x1 ) (−ψ1 (x1 )) + ψ2 (x0 ) ψ1 (x0 ) = h̄2 [E1 − E2 ] ψ1 (x) ψ2 (x) dx.<0>0x0Это равенство не может выполняться, если функция ψ2 (x) не меняетзнак на интервале (x0 , x1 ) хотя бы один раз.Таким образом, между любыми двумя нулями функции ψ1 (x) (включая два нуля на границе области определения) найдётся хотя бы один нольфункции ψ2 (x).

Число нулей стационарного состояния ψ2 (x), отвечающегобольшей энергии, строго больше, чем число нулей стационарного состояния ψ1 (x).(*) Принадлежность состояний ψ1 и ψ2 к дискретному спектру важнадля сходимости интеграла лишь в случае бесконечной области интегрируемости. Если x0 и x1 конечны, то от этого условия можно отказаться. Между любыми двумя конечными нулями вещественной собственной функциибудет хотя бы один ноль другой вещественной собственной функции, отвечающей большей энергии.6.2. О СЦИЛЛЯТОРНАЯТЕОРЕМА1816.2.5. Сокращение числа нулей*Для того, чтобы завершить доказательство осцилляторной теоремы(после того, как мы доказали рост числа нулей с ростом энергии), намосталось показать, что если для некоторого одномерного гамильтониана вида (6.1) существует дискретное стационарное состояние ψn с энергией En ,имеющее n внутренних нулей, то найдётся дискретное стационарное состояние ψn−1 того же гамильтониана с числом внутренних нулей, равным n−1.Пусть xk , k = 1, .

. . n, — внутренние нули функции ψn . x0 и xn+1 —границы области определения. Пусть нули пронумерованы в порядке возрастания:−∞ x0 < x1 < . . . < xn < xn+1 +∞.внутренние нулиЕсли разделить ось x на n+1 интервалы (xk , xk+1 ) (k = 0, .

. . , n), поставивв точках xk (k = 1, . . . , n) бесконечно высокие стенки, то в каждой из n + 1получившихся потенциальных ям мы будем иметь дискретный спектр, длякоторого состояниеψnk (x) = I(xk ,xk+1 ) (x) · ψn (x),k = 0, . . . , n(характеристическая функция определена уравнением (3.10)), полученноеограничением ψn на соответствующий интервал, станет основным, т. к. ψn ,ограниченное на соответствующий интервал, уже не имеет внутреннихнулей.Покажем, при помощи вариационного принципа (см.

раздел 4.11.2),что при расширении одной из ям за счёт отодвигания стенки энергия основного состояния строго убывает. При расширении ямы номер k средняяэнергия, вычисленная для состояния ψnk , не изменится, т. к. мы просторасширим область интегрирования вне (xk , xk1 ), туда где ψnk (x) ≡ 0. Таким образом, энергия основного состояния не увеличится. Однако функция ψnk (x) не может доставлять минимум гамильтониану расширеннойямы, т. к. она тождественно равна нулю на интервале, на который отодвинулась стенка, не удовлетворяет на этом интервале условию единственности и не может быть собственной функцией.

Значит энергия основногосостояния при расширении ямы станет строго меньше.Если мы будем двигать стенки, то между двумя стенками спектр всегдабудет только дискретным, а значит будет дискретным и основное состояние.Между стенкой и бесконечной точкой (если x0 = −∞, или xn+1 == +∞) дискретный спектр заведомо сохранится, если мы не будем сдви-182ГЛАВА 6гать крайнюю левую стенку левее x1 , а крайнюю правую — правее xn ,т.

к. асимптотика на бесконечности не может «испортится» при пониженииуровня энергии.Чтобы доказать существование состояния ψn−1 , над достаточно показать, что мы можем выкинуть одну из n стенок, которые мы поставилив точки xk , а оставшиеся так расставить на интервале (x1 , xn ) в точках yk(k = 1, . . . , n−1), чтобы энергии основных уровней во всех n ямах совпалидруг с другом. Тогда искомую функцию всегда можно записать как линейную комбинацию функций основных состояний ψn−1,k (k = 0, . . . , n − 1)в ямах между новыми положениями стенок:ψn−1 (x) =n−1cn−1,k ψn−1,k (x).k=0Значения функций ψn−1,k (x) вне соответствующих интервалов (yk , yk+1 )равны нулю, а коэффициенты cn−1,k подбираются так, чтобы обеспечитьв точках yk непрерывность первой производной ψn−1.Покажем, что расстановка n−1 стенки, при которой энергия основныхсостояний во всех n ямах одинакова, действительно существует.

Для этогомы сделаем естественное предположение, что энергия основного состояниянепрерывно зависит от положения бесконечно высоких стенок, её ограничивающих.Пусть стенки перемещаются по следующим правилам:0) Начнём с конфигурации с выкинутой первой стенкой. То есть пустьстенки на итерации 0 стоят в точках yk (0) = xk+1 (k = 1, .

. . , n − 1).1) На шаге номер l (l = 1, . . . , n − 1) мы передвигаем стенку номер l влево настолько, чтобы уравнять энергии основных состояний в ямахсправа и слева от справа от неё. В результате мы получаем конфигурацию стенок yk (1) в итерации 1, в которой энергии основных состоянийв яме k монотонно возрастают слева направо при k = 0, . . . , n − 2, а в последних двух ямах основные уровни совпадают, причём En−1,n−2 (1) == En−1,n−1 (1) < En .2) Повторяем пункт 1) бесконечно много раз порождая последовательность итераций yk (N ), N = 0, .

. . , ∞.3) В результате все мы получаем некоторую предельную конфигурацию стенок yk (∞) (k = 1, . . . , n − 1). Предел обязан существовать, т. к. всестенки сдвигаются только влево, и не одна и из них не сдвигается левее,чем x1 , т. к. сдвиг левее, чем x1 , означает, что En−1,0 > En , что невозможно.6.3. ОДНОМЕРНАЯЗАДАЧА РАССЕЯНИЯ1836.2.6. Завершение доказательства*Мы показали, что если состояние дискретного спектра имеет n внутренних нулей, то мы можем построить состояние, имеющее n − 1 нуль.Уменьшая число нулей на каждом шаге на один, мы убеждаемся, что в дискретном спектре число внутренних нулей меняется с шагом единица отнуля (для основного состояния) до некоторого максимального числа илибесконечности.Доказанное ранее утверждение, что число нулей в непрерывном спектре растёт с ростом энергии, теперь означает, что число нулей нумеруетдискретные уровни подряд в порядке возрастания энергии.Нули функции ψn+1 должны чередоваться с нулями ψn , т.

к. нам нуженнуль на каждом промежутке между нулями функции ψn , а таких промежутков имеется ровно n + 1.Таким образом, осцилляторная теорема доказана.6.3. Одномерная задача рассеяния6.3.1. Постановка задачиВ одномерном случае, когда потенциал на бесконечностях имеет конечные пределы, может быть поставлена одномерная задача рассеяния, в которой для падающей частицы с определённой энергий надо определить с какой вероятностью она пройдёт через потенциал, а с какой вероятностьюотразится обратно.Одномерная задача рассеяния ставится для энергии из непрерывногоспектра, причём, как мы увидим далее, нетривиальное решение возможнотолько для вырожденного значения энергии.Одномерная задача рассеяния ставится как задача определения асимптотики на бесконечности (там, где потенциал выходит на константу) решения стационарного уравнения Шрёдингера определённого вида:ψ +2m(Eh̄2ψ(x) →− U (x)) = 0,ikxe+падающая волнаψ(x) →ik xd e (6.15)−ikxr e ,1h̄x → −∞,x → +∞,прошедшая волнаk=,отражённая волна2m(E − U− ),k =1h̄2m(E − U+ ).184ГЛАВА 6ikxU(x), Eeik'xdere–ikxU1U+U–xU0Рис.

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Нашёл ошибку?
Или хочешь предложить что-то улучшить на этой странице? Напиши об этом и получи бонус!
Бонус рассчитывается индивидуально в каждом случае и может быть в виде баллов или бесплатной услуги от студизбы.
Предложить исправление
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
5137
Авторов
на СтудИзбе
441
Средний доход
с одного платного файла
Обучение Подробнее