Лекции 2012 (949139), страница 9

Файл №949139 Лекции 2012 (Лекции 2012) 9 страницаЛекции 2012 (949139) страница 92013-09-22СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

В зависимости от соотношения веса G тела и архимедовой силы возможны три случая:

1) G> FА — отрицательная плавучесть, тело тонет;

2) G<FА — положительная плавучесть, тело всплывает и плавает на поверхности жидкости;

3) G = FА нулевая плавучесть, тело плавает погруженным в жидкость полностью.

Для равновесия плавающего тела, кроме равенства G = FА должен быть равен нулю суммарный момент. Последнее условие соблюдается тогда, когда центр тяжести тела лежит на одной вертикали с центром водоизмещения. Условие устойчивого равновесия тела, плавающего в полностью погруженном состоянии, заключается в следующем: центр тяжести тела должен находиться ниже центра водоизмещения.

4.5. Прямолинейное равноускоренное движение

сосуда с жидкостью.

Если при движении сосуда на частицы жидкости, кроме сил тяжести действуют еще силы инерции, под действием этих сил жидкость принимает новое положение равновесия - положение относительного покоя.

Относительным покоем называется равновесие жидкости, находящейся под действием сил тяжести и инерции в движущемся сосуде.

При относительном покое положение свободной поверхности и поверхностей уровня, отличается от их положения для жидкости в неподвижном сосуде.

При определении формы и положения этих поверхности учитывается основное свойство поверхности уровня.

Основное свойство поверхностей уровня - равнодействующая массовых сил всегда нормальна к этим поверхностям.

В полном дифференциале давления

dP=ρ(X*dх+У*dy+Z*dz), (4.12)

Х,У,Z – алгебраическая сумма проекций на оси координат ускорений силы тяжести и сил инерции переносного движения.

Вдоль поверхности уровня dР=0 , так как поверхности уровня - это поверхности равного давления. Дифференциальное уравнение поверхности равного давления:

X*dх+У*dy+Z*dz = 0 (4.13),

Этот трехчлен (4.13) определяет элементарную работу массовых сил X,У,Z на перемещениях dх, dy, dz. В данном случае перемещение взято по поверхности равного давления, dР=0.

Из этого выражения следует, что работа массовых сил вдоль поверхности равного давления равна нулю. Это значит, что в состоянии относительного покоя результирующее ускорение перпендикулярно к соответствующему элементу поверхности равного давления.

Рассмотрим два случая относительного покоя.

Первый случай: сосуд, движущийся прямолинейно и равноускоренно.

Второй случай: сосуд, вращающийся вокруг вертикальной оси с постоянной угловой скоростью.

На рис.4.5 изображен сосуд, движущийся вниз с ускорением а по плоскости наклонённой под углом α к горизонту. Оси координат оси координат связаны с движущимся телом.

1. Пусть на жидкость действует суммарная массовая сила F, проекции которой Fx, Fy, Fz , поделенные на массу: Fx/m являются проекциями единичной массовой силы на оси Ох, Оу, Oz: Х, У и Z.

F = Fx+Fy+Fz = mа, F/m = Fx/m +Fy/m +Fz/m = X +Y + Z = а.

Все выделенные составляющие являются векторными величинами.

Проекции массовых сил, действующие на выделенный объем в направлении координатных осей, будут равны произведениям проекций единичных сил, умноженным на массу выделенного объема.

Fx = mX, Fy = mY, Fz = mZ.

Результирующую единичную массовую силу, действующую на жидкость, найдем как сумму единичных векторов силы инерции j и силы тяжести g. Единичная сила инерции Fи = j = - a направлена в сторону противоположную ускорению а (рис.4.5).

Проекции сумм массовых сил на оси:

Ox: X = j - gSinα,

Oz : Z = -gCosα,

Оx: Y = 0.

При подстановке этих проекций в дифференциал давления, получим

(1/ρ)dp = [(j - gSinα)dx – (gCosα)dz].

Проинтегрировав дифференциал в проекциях, получим выражение для давления на поверхностях уровня

Р = ρ [(j - gSinα) x – (gCosα)z] + С. (4.14)

На произвольной поверхности уровня давление постоянно Р = const и, обозначив новую постоянную С1 - Р = const, где Р получим уравнение изобарических поверхностей

ρ [(j - gSina) x – ρgCosa* z] +С1 = 0 (4.15)

Это уравнение дает семейство плоскостей, параллельных оси Оу. Одной из них является свободная поверхность.

Обозначим через z0 координату пересечения свободной поверхности с осью z. Подставив в формулу (4.15) х0 = 0, z = z0, находим С1g z0Cosα для свободной поверхности. Уравнение этой поверхности имеет вид

ρ [(j - gSina) x – ρgCosa* z] + ρg z0Cosα = 0

(j - gSina) x –gCosa*( z + z0) = 0

где коэффициент в линейном уравнении равен тангенсу угла β .

Для определения положения свободной поверхности жидкости в сосуде, движущемся прямолинейно и равноускоренно к уравнению (4.16) нужно добавить уравнение объемов, т. е. нужно знать первоначальный объем жидкости в сосуде и выразить его через размеры сосуда В и Н и первоначальный уровень h.

Если сосуд движется только под действием силы тяжести, то j= gSinα β = 0, то свободная поверхность параллельна плоскости движения.

При нулевых условиях: х = 0, z = z0, P = P0 в формуле (4.14), получим C = P0+ (ρgCosa)z0:

Р = ρ [(j - gSinα) x – (gCosα)z + С

Р = P0+ρ(j-gSina)x+ρgCosa(z0z). (4.19)

Эта формула используется для определения давления в любой точке жидкости, находящейся в относительном покое при прямолинейном движении

Можно также использовать суммарную массовую единичную силу q для определения давления в любой точке.

Возьмем на рис.4.5 около точки М площадку dS, параллельную свободной поверхности, и на этой площадке построим цилиндрический объем с осью, нормальной к свободной поверхности. Условие равновесия указанного объема жидкости в направлении нормали к свободной поверхности будет иметь вид

РdS = P0dS + q(ρldS),

где последний член представляет собой полную массовую силу, q – суммарная единичная массовая сила, М = ρldS - масса выделенного объема жидкости, l — расстояние от точки М до свободной поверхности.

После сокращения на dS получим давление в точке

Р = P0 + qρl, (4.20)

4.6. Равномерное вращение сосуда с жидкостью

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему вращение с постоянной угловой скоростью ω вокруг его вертикальной оси. Силы трения о стенки вращающегося сосуда будут увлекать за собой жидкость. Она постепенно приобретет ту же угловую скорость, что и сосуд, находясь по отношению к сосуду в покое. Свободная поверхность жидкости изменится.

В центральной части уровень жидкости опустится, у стенок она поднимется, и вся свободная поверхность жидкости станет поверхностью вращения (рис.4.6).

На жидкость будут действовать силы давления, силы тяжести и силы инерции переносного движения. Частица жидкости будет находиться под действием ускорения силы тяжести и центростремительного ускорения, а равное ему ускорение силы инерции будет центробежным. Единичная массовая сила тяжести Fg = g и единичная массовая центробежная сила Fцб = ω2r.

Проекции этих сил на оси координат дадут следующие выражения

X = (V2/r) Cos(r^x) = ω2r Cos(r^x)= ω2X

Y = (V2/r) Cos(r^y) = ω2r Cos(r^у)= ω2Y,

Z = -g

Подставляя эти проекции в дифференциальное уравнение поверхности равного давления и интегрируя :

X*dх+У*dy+Z*dz = 0,

получим ρ(ω2/2) (X2 + Y2) – ρgz + С = 0.

Уравнение свободной поверхности, например, получим, при нулевых условиях: Р0 = const, х = у = 0, z= z0, где координата вершины параболоида свободной поверхности. Тогда С = ρgz0.

ρ(ω2/2) (X2 + Y2) – ρgz + ρgz0 = 0,

(ω2/2) (X2 + Y2) =g(z - z0)

и после деления на g уравнение свободной поверхности получит вид

(4.22)

Таким образом, поверхности равного давления, в том числе и свободная поверхность, образуют семейство параболоидов, сдвинутых вдоль вертикальной оси. Каждому значению р соответствует свой параболоид, положение которого определяет константа С.

Эти поверхности будут конгруэнтными параболоидами вращения с осью Oz. Один из этих параболоидов – свободная поверхность жидкости, где Р0= Ратм.

Две геометрические фигуры называются конгруэнтными, если их можно совместить одну с другой, изменив их положение в пространстве.

Подставляя проекции массовых сил в дифференциал давления

dp = ρ(Xdx + Ydy + Zdz),

получим dp = ρω2 (Xdx + Ydy) –ρ gdz,

вынесем знак дифференциала за скобки,

dp = ρ d[(ω2/2) (X2 + Y2)] –ρ gdz,

и проинтегрировав, получим выражение для определения давления в любой точке

p = ρ(ω2/2) (X2 + Y2) –ρ gz + С1, (4.21)

Значение константы для свободной поверхности Р = Р0, x=y=0, z = z0: С1 = Р0 + ρgz0.

Получим уравнение для определения давления в любой точке:

Характеристики

Тип файла
Документ
Размер
6,89 Mb
Материал
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Почему делать на заказ в разы дороже, чем купить готовую учебную работу на СтудИзбе? Наши учебные работы продаются каждый год, тогда как большинство заказов выполняются с нуля. Найдите подходящий учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6384
Авторов
на СтудИзбе
308
Средний доход
с одного платного файла
Обучение Подробнее