Лекции 2012 (949139), страница 13

Файл №949139 Лекции 2012 (Лекции 2012) 13 страницаЛекции 2012 (949139) страница 132013-09-22СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 13)

Для определения полной удельной мощности потока разделим мощность потока на средний массовый расход: Qm = ρQ = , где Q=Vср*S.

(6.5)

Умножив и разделив последний член на V , получим, переходя к напорам (третья степень в знаменателе получается умножением на скорость в составе расхода)

(6.6)

где α – безразмерный коэффициент Кориолиса, учитывающий неравномерность распределения скоростей и равный

(6.7)

Умножив числитель и знаменатель на ρ/2, получим: коэффициент Кориолиса представляет собой отношение действительной кинетической энергии потока в данном сечении к кинетической энергии того же потока и в том же сечения, но при равномерном распределении скоростей, поскольку интеграл от dm = ρ*VdS – масса потока в данном сечении:

Возьмем два сечения реального потока, первое и второе, и обозначим средние значения полного напора жидкости в этих сечениях соответственно Нср1 и Нср2. Тогда

Н ср1 = Нср2 + Σhп,

где Σhп - суммарная потеря полного напора на участке между рассматриваемыми сечениями.

Это уравнение Бернулли для потока вязкой жидкости:

(6.8)

От уравнения для элементарной струйки идеальной жидкости это уравнение отличается четвертым членом - потерей полного напора, и коэффициентами Кориолиса, учитывающим неравномерность распределения скоростей. Скорости, входящие в это уравнение, являются средними скоростями в первом и тором сечениях потока.

Это уравнение Бернулли применимо не только для жидкостей, но для газов при условии, что скорость их движения значительно меньше скорости звука.

Графически это уравнение представляется диаграммой подобно уравнению Бернулли для идеальной жидкости с учетом потерь напора. Потери напора вдоль потока возрастают.

Уравнение Бернулли для струйки идеальной жидкости - это закон сохранения механической энергии.

Уравнение Бернулли для потока реальной жидкости - уравнение баланса энергии с учетом потерь.

Энергия, теряемая жидкостью на рассматриваемом участке течения превращается в тепловую форму энергии.

Хотя удельная теплоемкость жидкостей велика и тепловая энергия непрерывно рассеивается, повышение температуры рабочей жидкости в гидросистемах бывает значительным. Процесс преобразования механической энергии в тепловую необратим, обратное превращение тепловой энергии в механическую здесь невозможно.

Уменьшение среднего значения полной удельной энергии жидкости вдоль потока, отнесенное к единице его длины, называется гидравлическим уклоном.

6.4 Гидравлические потери .

Гидравлические потери удельной энергии, выраженные напором или давлением, зависят от формы и размеров трубопровода, скорости течения и вязкости жидкости.

При турбулентном режиме движения жидкости гидравлические потери пропорциональны скоростям во второй степени, в единицах длины

h п = ζ V2 ср /(2g), (6.9)

где ζ - безразмерный коэффициент местного сопротивления; V - средняя скорость потока (обычно - в сечении трубопровода перед местным сопротивлением или после него). В единицах давления

pп = ρghп = ζρ V2 ср /2. (6.10)

Безразмерный коэффициент потерь ζ - дзета называется коэффициентом сопротивления и равен отношению величины потерянного напора к скоростному напору.

Гидравлические потери разделяют на местные потери и потери на трение по длине.

Значение ζ вообще зависит от формы местного сопротивле­ния, шероховатости его стенок, условий входа и выхода из него жидкости и основного критерия динамического подобия напор­ных потоков - числа Рейнольдса.

Число Рейнольдса обычно относят к сечению трубопровода, в котором находится местное сопротивление

.

где V и Q - средняя скорость потока и расход в трубе; D - диа­метр трубы; ν- кинематическая вязкость жидкости.

Для большинства местных сопротивлений в трубопроводах при числах Рейнольдса Re > 105 имеет место турбулентная автомодельность - потери напора пропорциональны скорости во вто­рой степени и коэффициент сопротивления не зависит от Re (квадратичнаνя зона сопротивления).

В тех местных сопротивлениях, где основной является вихре­вая потеря напора (например, резкое изменение сечения трубопровода, диафрагмы и др.), автомодельность устанавливается при значительно меньших числах Рейнольдса Re≥104.

Число Рейнольса определяет режим течения жидкости. При его значении меньше Re≤2300 режим течения жидкости называется ламинарным, от слова ламина – слой или слоистым.

Ламинарным движением жидкости называется режим ее течения упорядоченным слоями без ее перемешивания.

Струи жидкости, находящиеся на разном удалении от оси движутся с различными скоростями. Наибольшую скорость имеет осевая струйка, при стенках скорость равна нулю.

Увеличение скорости понижает устойчивость ламинарного течения и нарушает его режим. На устойчивость ламинарного режима оказывают влияние вязкость жидкости, плотность, скорость движения частиц, а также диаметр трубопровода.

При увеличении скорости струйки разрываются, разрыву предшествует образование волнообразных колебаний. При усилении колебаний струйка полностью перемешивается с окружающей жидкостью. Движение частиц производит впечатление беспорядочных вихрей. При числах Рейнольса больше Re>2300 режим течения жидкости становится турбулентным.

Турбулентным движением жидкости называется режим ее течения неупорядоченным слоями с их перемешиванием.

6.5.Местные потери

Местные потери энергии вызваны изменениями формы и размера трубопровода, вызывающими деформацию потока. Жидкости, протекая через местные сопротивления, изменяет скорость и образует вихри. После отрыва потока от стенок вихри образуют области, в которых частицы жидкости движутся в основном по замкнутым траекториям.

Примеры местных сопротивлений приведены на рис. 6.3. Здесь же показаны отрывы потока и вихреобразование.

Каждое местное сопротивление характеризуется значением коэффициента сопротивления ζ, которое приближенно можно считать постоянным для данной формы местного сопротивления.

6.6. Потери энергии на трение по длине

Эти потери возникают в прямых трубах постоянного сечения и при равномерной скорости течения, возрастают пропорционально длине трубы (рис.6.4).

Потери энергии на трение по длине связаны с внутренним трением в жидкости, эти потери можно определять по формуле для гидравлических потерь, т. е.

h тр = ζ тр v2/(2g).

Поскольку длины труб разные, коэффициент потерь на трение ζтр связывают с относительной длиной трубы l/d.

Коэффициент потерь на трение участка круглой трубы с длиной равной ее диаметру

l = d обзначают буквой λ –лямбда, если длина трубы l не равна диаметру d, коэффициент потерь будет в l/d раз больше:

ζ тр = λ* l/d .

Формула для определения потерь на трение по длине называется формулой Вейсбаха – Дарси.

(6.11)

или в единицах давления

(6.11')

Коэффициент λ, входящий в формулы для определения потерь по длине называется "коэффициентом потерь на трение по длине", или "коэффициентом Дарси".

Физический смысл коэффициента λ. При равномерном движении в трубе длиной l и диаметром d, имеет место равновесие сил, действующих на объем: сил давления и силы трения. Это равновесие выражается равенством

πd2pтр/4 - πdlτ0 = 0,

где τ0 — напряжение трения на стенке трубы.

Так как , то λ= ,

λ есть величина, пропорциональная отношению напряжения от силы трения на стенке трубы к динамическому давлению, определяемому по средней скорости.

6.6. Применение уравнения Бернулли в технике

6.6.1. Расходомер Вентури - устройство, устанавливаемое в трубопроводах и выполняющее сужение потока — дросселирование (рис.6.5).

Расходомер состоит из двух участков — плавно сужающегося сопла и постепенно расширяющегося диффузора. Скорость потока в суженном месте возрастает, а давление падает. Возникает перепад давлений, который измеряется двумя пьезометрами и дифференциальным U-образным манометром.

В сечении 1-1 перед сужением скорость потока равна V1, давление Р1, площадь сечения S1 , а в cечении 2-2: V2, P2 ,S2 , разность показаний пьезометров, присоединенных к сечениям ΔН.

Запишем для сечений 1-1 и 2-2 потока уравнение Бернулли и уравнение расхода, считая распределение скоростей равномерным.

где hм — потеря напора между сечениями 1-1 и 2-2.

Характеристики

Тип файла
Документ
Размер
6,89 Mb
Материал
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
А знаете ли Вы, что из года в год задания практически не меняются? Математика, преподаваемая в учебных заведениях, никак не менялась минимум 30 лет. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6372
Авторов
на СтудИзбе
309
Средний доход
с одного платного файла
Обучение Подробнее