Лекции 2012 (949139), страница 8
Текст из файла (страница 8)
Диапазоны показаний лежат в пределах 0 ... 16 мбар и 0...40 бар с классом точности 1,6 и 2,5. Более высокий класс точности обеспечивают манометры с мембранами (плоскими пружинами) в специальном исполнении.
3 Манометры с коробчатой пружиной. Давление измеряемой среды воздействует на внутреннюю сторону коробки, состоящей из двух кругообразных, гофрированных, герметично прилегающих друг к другу мембран. Возникающее под давлением поступательное движение пропорционально величине давления. Движение передается на шкалу с помощью стрелочного механизма. Манометры с коробчатой пружиной особенно пригодны для измерений давления газообразных сред. Защита от перегрузки возможна только в определенных границах. Для повышения чувствительности в манометре может устанавливаться ряд коробчатых пружин (“пакет” коробчатых пружин). Диапазоны показаний лежат в пределах от 0 ... 2,5 мбар до макс. 0 ... 0,6 бар с классом точности от 0,1 до 2,5.
4-я лекция.
4. ГИДРОСТАТИКА-2
4.1. Сила давления жидкости па плоскую стенку.
4.2. Точка приложения силы давления.
4.3 Сила давления жидкости на криволинейную стенку.
4.4.Плавание тел.
4.5. Прямолинейное равноускоренное движение сосуда с жидкостью.
4.6. Равномерное вращение сосуда с жидкостью.
4.1. Сила давления жидкости па плоскую стенку
Давление жидкости на плоскую стенку, наклоненную к горизонту под произвольным углом α, определяется по основному уравнению гидростатики
Р=Р0+hρg
Определим силу давления F, действующую со стороны жидкости, на участок рассматриваемой стенки, ограниченный произвольным контуром, имеющим площадь S.
Ось Ох направим перпендикулярно плоскости стенки от точки ее пересечения со свободной поверхностью жидкости, а ось Оу — перпендикулярно оси Ох в плоскости стенки.
Выразим элементарную силу давления, приложенную к бесконечно малой площадке δS , для остальных площадок силы будут определяться таким же образом
δFж = P*δS =(P0 + ρhg) δS = P0*δS + ρhg*δS,
где Р0 — давление на свободной поверхности, h — глубина расположения площадки δS.
Переходя к пределу при стремлении площадки δS→0, получим выражение для дифференциала силы давления:
dFж = P0*dS + ρhg*dS,
Проинтегрировав этот дифференциал по площади S, получим выражение для определения полной силы Fж
где у — координата площадки dS, h = у*Sinα .
Интеграл представляет собой статический момент площади S относительно оси Ох , который равен произведению площади S на координату ус ее центра тяжести - точки С:
Усилие давления жидкости на плоскую, наклоненную стенку равно
Fж = P0S+ρg(yc Sinα) S = P0S+ρghcS, (4.1)
здесь hc = (yc Sinα)— глубина расположения центра тяжести площади S.
Fж = ρg (H0 +hc)S = PcS, (4. 2)
Сила давления жидкости Fж = ρghcS – это вес объема V = hcS жидкости.
Полная сила давления жидкости Fж на плоскую стенку равна произведению площади стенки S на гидростатическое давление Рс в центре тяжести этой площади.
1.В частном случае, когда давление Р0 является атмосферным и действует также с другой стороны стенки, сила избыточного давления жидкости Fизб ж на плоскую стенку равна лишь силе Fж давления от веса столба жидкости, т. е.
Fизб ж = PcS= ρghcS.
2. В общем случае давление Р0 может существенно отличаться от атмосферного, поэтому полную силу F давления жидкости на стенку можно рассматривать как сумму двух сил: F0 от внешнего давления Р0 и силы Fж от веса столба жидкости, т. е.
F= F0 + Fж = (P0+Pс)S. (4.3.)
4.2. Точка приложения силы давления.
Внешнее давление Р0 передается всем точкам площади S одинаково, и его равнодействующая сил внешнего давления F0 будет приложена в центре тяжести площади S с координатой - ус.
Для нахождения точки D приложения силы давления Fж от веса жидкости применим теорему механики, согласно которой момент равнодействующей силы относительно оси Ох равен сумме моментов составляющих сил, в данном случае элементарных сил.
где уD — координата точки приложения силы, h=y*Sinα.
Используя выражение для:
Fж = ρghc*S = ρg(ycSinα)*S - силы жидкости, действующей на плоскую стенку,
и для:
dFж= ρgh*dS= ρg(ySinα)*dS - силы жидкости, действующей на элементарную площадку, получим
где - момент инерции площади S относительно оси Оx.
Подставляя в формулу (4.4) значение:
момента инерции и площади S - Jx относительно оси х, через момент инерции той же площади - Jx1 относительно центрально оси х1 параллельной оси Ох, находим
Jx = Jx1+yC2S, (4.5)
уD = уC+ Jx1/(усS), (4.6.)
Точка D приложения силы Fж расположена ниже центра тяжести площади стенки; расстояние между ними
ΔуD= уD -ΔуC = Jx0/( усS), (4.7) .
Если давление Р0 равно атмосферному, то точка D будет центром давления.
При Р0 > Pат центр давления находят по правилам механики, как точку приложения равнодействующей двух сил F0 и Fж , чем больше первая сила по сравнению со второй тем, очевидно, центр давления ближе к центру тяжести площади S.
Если стенка имеет форму прямоугольника размерами а × b (рис. 4.2) и с одной стороны - атмосферное давление, центр давления D находится па расстоянии b/3 от нижней стороны.
4.3 Сила давления жидкости на криволинейную стенку.
Нахождение силы давления жидкости на поверхности произвольной формы в общем случае приводится к определению трех составляющих суммарной силы и трех моментов.
Рассмотрим действие жидкости на цилиндрические или сферические поверхности, имеющие вертикальную плоскость симметрии. Сила давления жидкости в этом случае сводится к равнодействующей силе, лежащей в плоскости симметрии.
Возьмем криволинейную поверхность АВ, образующая которой перпендикулярна к плоскости чертежа (рис.4.3а), определим силу давления жидкости на эту поверхность.
Выделим объем жидкости, ограниченный поверхностью АВ, вертикальными плоскостями, проведенными через границы этого участка ВС и AD, свободной поверхностью жидкости. Рассмотрим условия равновесия объема АВСD в вертикальном и горизонтальном направлениях.
Сила давления жидкости P действует на стенку АВ, стенка АВ удерживает действие жидкости силой реакции стенки Rс = P, направленной в противоположную сторону. На рис. 4.3 сила реакции стенки и сила давления жидкости разложены на горизонтальные и вертикальные составляющие.
Условие равновесия объема АВСD в вертикальном направлении имеет вид
Rсв =Pжв= Р0Fг + G = Р0Fг + ρgV0, (4.8)
где Р0 - давление на свободной поверхности жидкости; Fг - площадь горизонтальной проекции поверхности АВ; G - вес выделенного объема жидкостиV0. Объем V0 называют – объем тела давления..
Условие равновесия того же объема в горизонтальном направлении запишем с учетом того, что силы давления жидкости на поверхности ЕС и АD взаимно уравновешиваются и остается лишь сила давления на площадь ВЕ т. е. на вертикальную проекцию поверхности Sв = LEB*B. Тогда
Rсг=Pжг= Fвρghc+ Fв Р0 = Fв(ρghc+ Р0). (4.9)
Определив по формулам (4.8) и (4.9) вертикальную и горизонтальную составляющие полной силы Рж, найдем
Сила давления жидкости на криволинейную стенку будет равна сила реакции стенки Rж = P и направлена в противоположную сторону.
Когда жидкость расположена снаружи (рис.4.3б), сила гидростатического давления на криволинейную поверхность АВ определяется также, но направление ее будет противоположным.
При этом под величиной G следует понимать так же, как и в первом случае вес жидкости в объеме АВСD, хотя этот объем и не заполнен жидкостью.
Положение центра давления на цилиндрической стенке можно найти, если известны силы Fв и Fг и определены центр давления на вертикальной проекции hD стенки и центр тяжести выделенного объема АВСD.
Задача значительно облегчается в том случае, когда рассматриваемая криволинейная поверхность является круговой. Равнодействующая сила при этом пересекает ось поверхности, так как любая элементарная сила давления нормальна к поверхности, т. е. направлена по радиусу.
Изложенный способ определения силы давления на цилиндрические поверхности применим и к сферическим поверхностям, причем равнодействующая сила в этом случае также проходит через центр поверхности и лежит в вертикальной плоскости симметрии.
4.4. Плавание тел.
Описанный выше прием нахождения вертикальной составляющей силы давления жидкости па криволинейную стенку используют для доказательства закона Архимеда.
Пусть в жидкость погружено тело произвольной формы объемом V (рис.4.4).
Спроектируем его на свободную поверхность жидкости и проведем проек-тирующую цилиндрическую поверхность W, которая касается поверхности тела по замкнутой кривой. Эта кривая отделяет верхнюю часть поверхности тела АСВ от нижней ее части ADB. Вертикальная составляющая Fв1 силы избыточного давления жидкости на верхнюю часть поверхности тела направлена вниз и равна весу жидкости в объеме АА’BВ’CA. Вертикальная составляющая Fв2 силы давления жидкости на нижнюю часть поверхности тела направлена вверх и равна весу жидкости в объеме АА’В’BDA. Отсюда следует, что вертикальная равнодействующая сил давления жидкости на тело будет направлена вверх и равна весу жидкости в объеме, равном разности указанных двух объемов, т. е.
FА = Fв2 - Fв1 = GACBD =Vρg. (4.11)
Закон Архимеда: на тело, погруженное в жидкость, действует выталкивающая сила направленная вертикально вверх, численно равная весу жидкости вытесненной телом и приложенная в центре тяжести объема погруженной части тел.
Сила FА называется архимедовой силой, а точка ее приложения, т. е. центр тяжести объема V — центром водоизмещения.