Шпоры (948204), страница 9

Файл №948204 Шпоры (Шпоры) 9 страницаШпоры (948204) страница 92013-09-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 9)

, (10.7а)

Умножим числитель и знаменатель на Vср получим

Формуле Вейсбаха-Дарси для определения потерь на трение при ламинарном движения где - λл - коэффициент потерь на трение: λл =64/R.e

10.3. Начальный участок ламинарного течения

Затем под действием сил вязкости происходит перераспределение скоростей по сечениям: слои жидкости, прилежащие к стенке, тормозятся, а центральная часть потока, где еще сохраняется равномерное распределение скоростей, движется ускоренно. lнач /d = 0,029Re.

Участок от начала трубы, на котором формируется параболический профиль скоростей, называется начальным участком течения - lнач.

10.4. Ламинарное течение в зазоре

Определим скорость, расход и потери при ламинарном течении в зазоре, образованном двумя параллельными плоскими стенками, расстояние между которыми равно а. Возьмем два нормальных поперечных сечения потока на расстоянии l одно от другого и рассмотрим поток шириной, равной единице. Выделим объем жидкости в форме прямоугольного параллелепипеда, расположенного симметрично относительно оси Ох между выбранными поперечными сечениями потока и имеющего размеры сторон l*2y*b, где b=1.

Условие равномерного движения выделенного объема вдоль оси Ох:

(2у*b)*pтр = - μ(∂V/∂y)*2l*b (10.13)

где ртр = р1- р2 – разность давлений(перепад) в рассматриваемых сечениях. Знак минус, потому что производная V/∂y отрицательна, 2l*b, так как две поверхности – сверху и снизу

Из предыдущего (10.13) найдем приращение скорости V, соответствующей приращению координаты y:

После интегрирования получим:

Так как на стенке y = a/2, V = 0, находим C = , откуда ,

Далее подсчитаем расход q, приходящийся на единицу ширины потока, для чего возьмем симметрично относительно оси Оz две элементарные площадки 2b*δy = 2δy, так как b=1 и выразим элементарный расход

перейдя к дифференциалам и интегрируя, получим

Выразим потерю давления на трение через полный расход Q= q*b при зазоре шириной b ≠ 1; получим

10.5. Ламинарное течение в зазоре. Случай подвижных стенок.

Когда одна из стенок, образующих зазор, перемещается параллельно другой стенке, а давление в зазоре постоянно вдоль длины, подвижная стенка увлекает за собой жидкость, и возникает так называемое фрикционное безнапорное движение.

Давления, приложенные к левой и правой граням элемента одинаковы (напора – нет), на элемент действуют только силы трения, вызываемые касательными напряжениями на верхней грани - τ на нижней грани τ+δτ.

Для того чтобы имело место равновесие, эти силы должны быть равны и τ = С.

По закону Ньютона τ = - μdv/dy = C (знак минус взят т.к. при dy > 0, dv<0) и после интегрирования

Постоянные С и С1 найдем при y = a/2, v = 0 и при y = a/2, v = u, где u – скорость стенки. Отсюда

После подстановки С и С1 в последнее уравнение получим закон распределения скоростей

Расход жидкости q, приходящийся на единицу ширины зазора, определяется по средней скорости: Vср = (u/2),

Если же указанное перемещение стенки происходит при перепаде давления в жидкости, заполняющей зазор, то закон распределения скоростей найдем, как сумму при совпадении силы давления жидкости и направления движения стенки или разность в противоположном случае.

Первое слагаемое формулы называется расходом напорного течения, а второе — фрикционным расходом.

10.6. Ламинарное течение в зазоре. Случай концентрических зазоров.

Этим выражением можно также пользоваться в том случае, когда зазор образован двумя цилиндрическими поверхностями, например, поршнем и цилиндром, при условии, что зазор между ними мал по сравнению с диаметрами поверхностей, и поверхности расположены соосно (рис. 10.7б).

Если поршень расположен в цилиндре с некоторым эксцентриситетом, то зазор а между ними будет переменной величиной:

Рассматривая элемент зазора шириной rδφ, как плоскую щель, получим следующее выражение для элементарного расхода:

Интегрируя по окружности, найдем полный расход

где Q0- расход при соосном расположении поршней в цилиндре (при концентрической щели). Из этого выражения следует, что при максимальном эсцентриситете (ε = 1) расход Q =2,5*Q0.

При расчетах течений жидкости в трубах с некруглым поперечным сечением используют так называемый гидравлический радиус, равный отношению площади сечения к его смоченному периметру П: Rг= S/П или гидравлическим диаметр Dг = 4Rг (для круглого сечения гидравлический диаметр равен геометрическому: Dг = D).

При ламинарном течении в этом случае расчеты ведут по обобщенной формуле Вейебаха—Дарси, в которую вместо d подставляют Dг, а вместо λ- λл =kλ л т. е.

где k — поправочный коэффициент, зависящий от формы сечения.

11.1. Число Рейнольдса. Характеристика режимов течения вязкой жидкости.

Характеризует режим движения вязкой жидкости в трубах и руслах.

Связь сил инерции и сил вязкости при изучении подобных течений на модели и в натуре выражается числом Рейнольдса.

Число Рейнольдса есть отношение сил инерции к силам вязкости в потоках реальной жидкости.

Если число Рейнольдса мало, то в потоке преобладают силы вязкости, если велико – силы инерции.

11.2. Основные сведения о турбулентном режиме течения жидкости. Эпюры скоростей. Относительная шероховатость.

Для турбулентного течения в отличии от ламинарного характерны пульсации скоростей и давлений, перемешивание жидкости.

В фиксированной точке потока величина скорости может быть измерена и зафиксирована во времени с помощью трубки полного напора или "трубки Пито".

Измерив, разность высот жидкости в трубке Пито и пьезометре, можно определить скорость жидкости в данной точке.

Запишем уравнение Бернулли для струйки, которая попадает в трубку вдоль ее оси. Для сечений 0-0 имеем Р0 и V0, и 1-1 P1,V1 =0:

Вокруг трубки давление также близко к Р=Ро, , следовательно, из предыдущего имеем

Турбулентное течение неустановившееся, так как значения скоростей и давлений, а также траектории частиц, изменяются по времени.

Для расчетов, усредняют скорости и давления. Если средние значения скоростей и давлений потока мало изменяются во времени, то по средним значениям принято считать турбулентное течение установившимся.

Средние скорости при турбулентном течении распределены более равномерно по сечению трубопровода в сравнении с ламинарным течением.

Коэффициент Кориолиса , учитывающий неравномерность распределения скоростей в уравнении Бернулли, при турбулентном течении меньше, чем при ламинарном течении. При ламинарном течении коэффициент Кориолиса не зависит от Re и равен приблизительно двум, при турбулентном течении близок к единице.

При турбулентном режиме при Re >Reкр потери энергии на трение по длине значительно больше, чем при ламинарном при тех же размерах трубы, расходе и вязкости жидкости.

При ламинарном режиме потери напора на трение возрастают пропорционально скорости в первой степени, а при переходе к турбулентному течению заметен скачок сопротивления и изменение сопротивления по кривой близкой к параболе.

Ввиду сложности турбулентного течения и трудностей его аналитического исследования до настоящего времени для него не имеется достаточно строгой и точной его теории.

Относительной шероховатостью называется отношение ∆/d, где ∆ - средняя высота бугорков неровностей (шероховатостей) внутри трубы, d — диаметр трубы.

11.2. Коэффициент сопротивления трения по длине

трубопровода при турбулентном потоке.

Основной расчетной формулой для потерь напора при турбулентном течении в круглых трубах является эмпирическая формула Вейсбаха— Дарси

где λт - коэффициент потерь на трение при турбулентном течении, или коэффициент Дарси.

При турбулентном течении потеря напора на трение пропорциональна скорости во второй степени, а коэффициент потерь на трение в формуле для данной трубы можно считать величиной постоянной.

11.3 Турбулентное течение в области гидравлически гладких труб.

Для практических расчетов потерь, связанных с турбулентным течением жидкостей в трубах были проведены экспериментальные исследования, и установлено, что коэффициент λт зависит от сочетания двух факторов: неровностей в трубе и числа Рейнольдса.

Труба называется гидравлически гладкой, когда ее шероховатость не влияет на коэффициент λт и соответственно на сопротивление потоку.

К гидравлически гладким трубам можно отнести цельнотянутые трубы из цветных металлов, включая и алюминиевые сплавы, а также высококачественные бесшовные стальные трубы.

В области гидравлически гладких труб при турбулентном течении в эмпирические зависимости для коэффициента λт , как и для ламинарного движения входит только число Рейнольдса: λт = f(Re).

Основную роль в образовании потерь энергии при турбулентном течении играет перемешивание и рассеивание кинетической энергии завихренных частиц.

Исследования турбулентного течения жидкости при небольших скоростях в области гидравлически гладких труб показали, что на стенке трубы образуется ламинарный подслой. Это тонкий слой жидкости, движение в котором является слоистым и происходит без перемешивания. Re = Vл δл/ν= const

При увеличении скорости потока толщина δл ламинарного слоя уменьшается.

11.4. Турбулентное течение в области в шероховатых труб.

Относительная шероховатость.

Труба называется гидравлически шероховатой, когда на ее внутренней поверхности ламинарный подслой мал или отсутствует.

Характеристики

Тип файла
Документ
Размер
2,63 Mb
Материал
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее