Шпоры (948204), страница 4

Файл №948204 Шпоры (Шпоры) 4 страницаШпоры (948204) страница 42013-09-21СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 4)

Р = P0+ρ(j-gSina)x+ρgCosa(z0z).

4.6. Равномерное вращение сосуда с жидкостью

Возьмем открытый цилиндрический сосуд с жидкостью и сообщим ему вращение с постоянной угловой скоростью ω вокруг его вертикальной оси. Силы трения о стенки вращающегося сосуда будут увлекать за собой жидкость. Она постепенно приобретет ту же угловую скорость, что и сосуд, находясь по отношению к сосуду в покое. Свободная поверхность жидкости изменится.

На жидкость будут действовать силы давления, силы тяжести и силы инерции переносного движения. Единичная массовая сила тяжести Fg = g и единичная массовая центробежная сила Fцб = ω2r.

dp = ρ(Xdx + Ydy + Zdz), dp = ρω2 (Xdx + Ydy) –ρ gdz,

dp = ρ d[(ω2/2) (X2 + Y2)] –ρ gdz, p = ρ2/2) (X2 + Y2) –ρ gz + С1

Значение константы для свободной поверхности Р = Р0, x=y=0, z = z0: С1 = Р0 + ρgz0.

Получим уравнение для определения давления в любой точке:

(4.22)

Пользуясь этими уравнениями можно определить положение свободной поверхности и давление в сосуде.

Максимальная высота Н подъема жидкости в параболоиде со свободной поверхностью может быть определена, следующим образом.

5.1. Основные понятия

Идеальная жидкость в гидродинамике — модель жидкости, в которой, в отличие от реальной жидкости, отсутствуют вязкость. При отсутствии вязкости отсутствует внутреннее трение, нет касательных напряжений между двумя соседними слоями.

В идеальной жидкости, как в неподвижной реальной жидкости, возможны только нормальные напряжения сжатия, т. е. гидромеханическое давление.

Задачей кинематики жидкости является определение скорости в любой точке жидкой среды, т. е. нахождение поля скоростей.

Установившимся называется течение жидкости, при котором давление и скорость являются функциями координат и не зависят от времени. р=f (х, у,z ); v=f2(х, у, z ).

Неустановившимся называется течение жидкости, характеристики которого изменяются во времени в точках рассматриваемого пространства. p=F1(x, y, z, t); v=F2(x, y, z, t).

Линией тока называется кривая, в каждой точке которой вектор скорости в данный момент времени направлен по касательной к этой кривой.

Трубкой тока называется бесконечно малый замкнутый контур, выделенный в данный момент времени в движущейся жидкости, через все точки которого проведены линии тока. Это условная трубчатая поверхность.

Элементарной струйкой называется часть потока, заключенная внутри трубки тока.

В модели идеальной жидкости потоки конечных размеров рассматривают, как совокупность элементарных струек. Соседние струйки из-за различия скоростей скользят одна по другой, но не перемешиваются.

Живым сечением или сечением струйки δS или потока - S, называется площадь поверхности в пределах струйки или потока, проведенная нормально к линиям тока. Смоченным периметром называется длина части периметра живого сечения, на которой поток соприкасается с твердыми стенками..

Гидравлическим радиусом называется отношение площади живого сечения к смоченному периметру Rг = S/P. Для потока в трубе круглого сечения:

Rг = S/P = (π/4)*d2/ (πd)=d/4.

5.2. Расход. Уравнение расхода

Расходом называется количество жидкости, протекающее через живое сечение потока в единицу времени.

Объемный - Q = V*S, (м3/с);

Массовый - Qm = ρV*S, (кг/с);

Весовой - QG = ρg*Q, (Н/с);

где V - мгновенная скорость в данной точке, δS – площадь сечения струйки.

Для потока конечных размеров в общем случае скорость различна

Если использовать среднюю по сечению скорость Vср = Q/S, то средний расход для струйки или потока равен Qср = Vср*S.

5.3 Уравнение неразрывности потока.

Условие неразрывности потока основывается на законе сохранения вещества.

А также на следующих допущениях:

а) трубка тока имеет свойство непроницаемости для внешних, обтекающих ее потоков;

б) предположение о сплошности (неразрывности) среды для установившегося течения несжимаемой жидкости.

На этих основаниях можно утверждать, что объемный расход во всех сечениях элементарной струйки (см. рис.5.2) один и тот же.

Уравнение неразрывности для элементарной струйки (уравнение расхода для элементарной струйки).

δQ = V1 *δS1 = V2 *δS2 → const (вдоль струйки). (5.6)
Уравнение неразрывности для потока, ограниченного непроницаемыми стенками (уравнение расхода для потока).

Q = Vср1 *S1 = Vср2 *S2 → const (вдоль потока), (5.6’)

где Vср1 , Vср2 - средние скорости.

Из этого уравнения (5.6') следует, что средние скорости в потоке несжимаемой жидкости обратно пропорциональны площадям сечений:

Уравнение расхода (5.6‘) является следствием общего закона сохранения вещества при условии сплошности (неразрывности) течения.

5.4. Уравнение Бернулли для элементарной струйки

идеальной жидкости

Возьмем одну из элементарных струек, составляющих поток, выделим сечениями 1 и 2 участок этой струйки произвольной длины. Пусть площадь первого сечения равна δS1, скорость в нем V1 , давление P1, а высота от плоскости сравнения Z1. Во втором сечении δS2, V2 , P2 и Z2.

За бесконечно малый отрезок времени δt выделенный участок струйки переместится в положение 1’ – 2’.

Используя формулировку теоремы, подсчитаем работу сил давления, сил тяжести и изменение кинетической энергии участка струйки за время δt:

(mV22)/2 - (m V12)/2 = G*( Z2- Z1) = G*h

Работа силы давления в первом сечении положительна (p1*δS1)*(V1δt)

Работа силы давления во втором сечении имеет знак минус - (p2*δS2) *(V2δt).

δA = (p1*δS1) *( V1δt)— (p2*δS2) *(V2δt).

Работа силы тяжести равна изменению потенциальной энергии выделенного объема струйки. δG = ρ*g* V1*δS1*δt = ρ*g* V2*δS2*δt .

Тогда работа силы тяжести выразится как произведение разности высот на силу тяжести δG: (z1-z2) *δG.

Таким образом, приращение кинетической энергии на участке струйки равно

(V22- V12)* δG/(2g),

Сложив работу сил давления с работой силы тяжести и приравняв эту сумму приращению кинетической энергии (5.10), получим исходное уравнение для трех видов уравнения Бернулли.

(p1*δS1) *( V1δt)— (p2*δS2) *( V2δt) +(z1-z2) *δG=(V22- V21)* δG/(2g

5.5. Первая форма уравнения Бернулли

Разделим это уравнение на δG - изменение силы тяжести элементарной струйки за время δt и произведя сокращения на

δG = ρ*g* V1*δS1*δt = ρ*g* V2*δS2*δt , получим

Сгруппировав члены, относящиеся к первому сечению, в левой части уравнения, а члены, относящиеся ко второму сечению, в правой, получим

"Уравнение Бернулли для элементарной струйки идеальной несжимаемой жидкости (первая форма уравнения Бернулли)":

(5.12)

где z - геометрический напор,

Р/ρg - пьезометрический напор,

V2/2g - скоростной напор.

Уравнение Бернулли (5.12) записано для двух произвольно взятых сечении струйки и выражает равенство полных напоров Н в этих сечениях. Так как сечения взяты произвольно, следовательно, и для любого другого сечения этой же струйки полный напор будет иметь одно и то же значение.

Для идеальной движущейся жидкости вдоль струйки тока сумма трех напоров: геометрического, пьезометрического и скоростного есть величина постоянная.

Линия изменения уровней жидкости в пьезометрах называется пьезометрической линией.

Поскольку в уравнении Бернулли суммарный напор постоянен, из уравнения расхода следует: при уменьшении площади поперечного сечения струйки, скорость течения жидкости увеличивается и увеличивается скоростной напор, а пьезометрический напор уменьшается, если площадь струйки увеличивается, скорость уменьшается, а пьезометрический напор возрастает.

5.6. Вторая форма уравнения Бернулли.

Разделив исходное уравнение (5.11) на элементарный объем

δW =δQ*δt= δS1V1*δt = δS2V2*δt,

учитывая, что

δG = ρ*gW, δW = δG/ρg,

получим p1 - p2 +(z1-z2) * ρ*g = ρ* (V22- V21)/2. или

.

Во второй форме члены уравнения Бернулли имеют размерность давления:

ρzg — весовое давление;

р — гидромеханическое давление;

ρv2/2 — динамическое давление.

5.7. Третья форма уравнения Бернулли.

Разделив исходное уравнение на массу δm = ρ*g*δW элементарного объема, равную

δm = ρ*( V1*δS1*δt) = ρ*( V2*δS2*δt) = δ = δG/g, а δG= gδm, преобразовав это уравнение, получим

Удельной энергией жидкости, называется отношение энергии жидкости к ее массе.

В третьей форме члены уравнения Бернулли имеют размерность энергии:

gz — удельная потенциальная энергия.

Р/ρ - удельная энергия давления жидкости.

Характеристики

Тип файла
Документ
Размер
2,63 Mb
Материал
Высшее учебное заведение

Список файлов ответов (шпаргалок)

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее