ответы на билеты (928559), страница 12
Текст из файла (страница 12)
, (4.3)
относительный угол закручивания.
Этот угол представляет собой угол взаимного поворота двух сечений, отнесенный к расстоянию между ними. Величина аналогична относительному удлинению при простом растяжении или сжатии стержня.
Из совместного рассмотрения (4.2) и (4.3) и после некоторых преобразований, получим:
= . (4.4)
Подставляя выражение (4.4) в выражение закона Гука для сдвига (2.23), в данном случае выражение касательных напряжений принимает следующий вид:
= G , (4.5)
где касательные напряжения в поперечном сечении бруса. Парные им напряжения возникают в продольных плоскостях в осевых сечениях. Величину крутящего момента Mz можно определить через с помощью следующих рассуждений. Момент относительно оси z от действия касательных напряжений на элементарной площадке dF равен (рис. 4.2):
dM = dF.
Рис. 4.2
Проинтегрировав это выражение по площади поперечного сечения вала, получим: . (4.6)
Из совместного рассмотрения (4.5) и (4.6) получим:
. (4.7)
Откуда
. (4.8)
Величина G I называется жесткостью бруса при кручении.
Из (4.8), с учетом (4.3), интегрируя полученное выражение по параметру z, получим:
. (4.9)
Если крутящий момент Mz и жесткость G I по длине бруса постоянны, то из (4.9) получим:
, (4.10)
где (0) угол закручивания сечения в начале системы отсчета.
Для определения выражения напряжений, возвращаясь к формуле (4.5) и исключая из него , согласно (4.8), получим:
()= . (4.11)
Величина называется полярным моментом сопротивления поперечного сечения бруса в форме сплошного круга радиусом R. Определяется эта величина из следующих соображений:
(4.12)
Если же в брусе имеется внутренняя центральная полость радиусом r = , то для кольца
, (4.13)
где с = .
Билет 21
1) Определение перемещений при растяжении-сжатии.
Перемещения и деформации
Под действием внешних сил твердые тела изменяют свою геометрическую форму, а точки тела неодинаково перемещаются в пространстве. Вектор , имеющий свое начало в точке А недеформированного состояния, а конец в т.
деформированного состояния, называется вектором полного перемещения т. А (рис. 1.5, а). Его проекции на оси xyz называются осевыми перемещениями и обозначаются u, v и w, соответственно.
Для того, чтобы охарактеризовать интенсивность изменения формы и размеров тела, рассмотрим точки А и В его недеформированного состояния, расположенные на расстоянии S друг от друга (рис. 1.5, б).
Пусть в результате изменения формы тела эти точки переместились в положение А и В, соответственно, а расстояние между ними увеличилось на величину S и составило S + S. Величина
называется линейной деформацией в точке А по направлению АВ. Если рассматривать деформации по направлениям координатных осей xyz, то в обозначения соответствующих проекций линейной деформации вводятся индексы x , y , z .
2) Расчёт на прочность при изгибе. Понятие о расчётном и нормативном коэффициенте запаса.
Расчёт на прочность при изгибе:
σmax ≤ [σ] ≤ στ / nτ ,где σmax = Mx max / Wx
Косой изгиб - такой случай изгиба, при котором плоскость изгибающего момента не совпадает ни с одной из главных осей поперечного сечения (рис. 5.27, а). Косой изгиб удобно рассмотреть как одновременный изгиб бруса относительно главных осей x и y поперечного сечения бруса. Для этого общий вектор изгибающего момента М, действующего в поперечном сечении бруса, раскладывается на составляющие момента относительно этих осей (рис. 5.27, б): Mx = Msin; My = Mcos (5.25)
Введем правило знаков для моментов Mx и My момент считается положительным, если в первой четверти координатной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.
По принципу независимости действия сил нормальное напряжение в произвольной точке, принадлежащей поперечному сечению бруса и имеющей координаты x, y, опр-ся суммой напр-й, обусловленных моментами Mx и My , т.е. (5.26)
Подставим выражения Mx и My из (5.25) в (5.26):
Последнее выражение представляет собой уравнение плоскости. Следовательно, если в каждой точке сечения отложить по нормали вектор напряжения , то концы векторов образуют геометрическое место точек, принадлежащих одной плоскости, как и при поперечном изгибе.
Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, найдем, полагая в (5.26) = 0:
Поскольку свободный член в (5.27) равен нулю нейтральная линия всегда проходит через начало координат. Как видно из выражения (5.26), эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении возникают в точках наиболее удаленных от нейтральной линии. В том случае, когда сечение имеет простую форму (прямоугольник, круг), положение наиболее опасных точек легко определяется визуально. Для сечений, имеющих сложную форму, необходимо применить графический подход.
Покажем, что при косом изгибе нейтральная линия не перпендикулярна к плоскости действия изгибающего момента, как это выполнялось при поперечном изгибе. Действительно угловой коэффициент K1 следа момента (рис. 5.27, б) равен:
K1 = tg . (5.28)
Угловой коэффициент нейтральной линии, как следует из (5.27), определяется выражением: (5.29)
Т.к. в общем случае Ix Iy, то условие перпендикулярности прямых, не соблюдается, поскольку K1 - 1/К2 . Брус изгибается не в плоскости изгибающего момента, а в некоторой другой плоскости, где жесткость на изгиб будет минимальной.
Внецентренное растяжение и сжатие
Внецентренное сжатие и растяжение как и косой изгиб относится к сложному виду сопротивления бруса. При внецентренном растяжении (сжатии) равнодействующая внешних сил не совпадает с осью бруса, а смещена относительно оси z и параллельна ей (рис. 5.31).
Пусть в точке А(xA , yA ) приложена равнодействующая внешних сил Р. Тогда относительно главных осей x и y равнодействующая сила Р вызывает моменты: Mx = PyA ; My = PxA . (5.34)
Таким образом, при внецентренном растяжении (сжатии) в поперечном сечении бруса возникает нормальная сила Nz= P и изгибающие моменты Mx и My . Следовательно, на основании принципа независимости действия сил в произвольной точке В с координатами x, y нормальное напряжение определяется следующим выражением: (5.35)
Используя выражения для квадратов радиусов инерции сечения:
можно (5.35) преобразовать к следующему виду:
Уравнение нейтральной линии получим, приравнивая нулю выражение для нормальных напряжений : (5.36)
Из (5.36) можно легко определить отрезки, которые отсекает нейтральная линия на координатных осях. Если приравнять x = 0, то получим:
где ay координата точки пересечения нейтральной линии и оси y. Решая это уравнение, получим:
Аналогичным образом можно определить координату пересечения нейтральной линии и оси x:
Можно решить и обратную задачу определить координаты приложения силы Р при заданных отрезках аx и аy . Опуская простейшие выкладки, приведем окончательные выражения:
Наибольшее напряжения, как и при косом изгибе, имеют место в точке наиболее удаленной от нейтральной линии. При внецентренном растяжении (сжатии) в отличие от косого изгиба нейтральная линия не проходит через центр тяжести сечения. Расстояние от начала координат x0y до прямой a y + b x + c = 0 определяется по формуле:
Следовательно, в данном случае
Т огда, как это следует из (5.37), по мере того, как точка приложения силы приближается к центру тяжести сечения, нейтральная линия удаляется от него.
При xA 0, yA 0, получаем 0 C . Сила в данном случае становится центральной, а напряжения в этом случае распределены по сечению равномерно. В тех случаях, когда нейтральная линия пересекает сечение, в нем возникают напряжения разного знака. В противном случае в сечении во всех точках возникают напряжения одного знака. Следовательно, в окрестности центра тяжести всегда существует некая область, называемая ядром сечения, такая, что если точка приложения силы Р расположена в пределах указанной области, то в поперечном сечении возникают напряжения лишь одного знака. При этом если сила приложена по границе ядра сечения, то нейтральная линия касается контура сечения.
Данный факт имеет большое значение при проектировании колонн из хрупких материалов, (например, бетона, кирпича и т.д.), которые, как правило, имеют существенно меньшую прочность на растяжение, нежели на сжатие. Поэтому при проектировании таких конструкций необходимо предусмотреть, чтобы равнодействующая сжимающая сила была расположена в пределах ядра сечения.