ответы на билеты (928559), страница 13
Текст из файла (страница 13)
Билет 22
1) Изменение моментов инерции плоской фигуры при повороте осей.
Изменение моментов инерции при повороте осей.
Р ассмотрим изменение моментов инерции при повороте осей координат. Положим, даны моменты инерции некоторого сечения относительно осей x и y (не обязательно центральных). Требуется определить Ju, Jv, Juv- моменты инерции относительно осей u,v, повернутых на угол а. Так проекция ОАВС равна проекции замыкающей:
u=y sin а + x cos a (1)
v=y cos a – x sin a (2)
Исключим u,v в выражениях моментов инерции:
Ju = ∫v2dF; Jv= ∫u2dF; Juv= ∫uvdF. Подставив в выражения (1) и (2) получим:
Ju=Jxcos2a – Jxysin 2a + Jy sin2 a
Jv=Jxsin2a + Jxysin 2a + Jy cos2 a (3)
Juv=Jxycos2a + sin 2a(Jx-Jy)/2
Ju +Jv=Jx +Jy=∫F(y2+x2)dF => Сумма осевых моментов инерции относительно 2х взаимно перпенд. Осей не зависит от угла а. Заметим, что x2+y2=p2. p- расстояние от начала координат до элементарной площадки. Т.о. Jx +Jy=Jp.(4)
Jp=∫F p2dF –полярный момент, не зависит от поворота х,у
2)Т. Кастелиано.
Частная производная от потенциальной энергии системы по силе равна перемещению точки приложения силы по направлению этой силы.
Рассмотрим стержень, нагруженный произвольной системой сил и закрепленный как показано на рис.
Пусть потенциальная энергия деформации, накопленная в объеме тела в результате работы внешних сил, равна U. Силе Fn дадим приращение d Fn. Тогда потенциальная энергия U получит приращение и примет вид U+
.(5.4)
Изменим теперь порядок приложения сил. Приложим сначала к упругому телу силу dPn. В точке приложения этой силы возникнет соответственно малое перемещение, проекция которого на направление силы dPn равна. dδn. Тогда работа силы dPn оказывается равной dPn· dδn /2. Теперь приложим всю систему внешних сил. При отсутствии силы dPn потенциальная энергия системы снова приняла бы значение U. Но теперь эта энергия изменится на величину дополнительной работы dPn·δn которую совершит сила dPn на перемещении δn , вызванном всей системой внешних сил. Величина δn опять представляет собой проекцию полного перемещения на направление силы Рn.
В итоге при обратной последовательности приложения сил выражение для потенциальной энергии получаем в виде
Приравниваем это выражение выражению (5.4) и, отбрасывая произведение dPn· dδn /2 как величину высшего порядка малости, находим
Билет 23
Кому-то не повезло
Билет 24
1) Кручение стержня прямоугольного поперечного сечения (определение напряжений и перемещений).
Кручение бруса прямоугольного сечения, напряжения в поперечном сечении
П ри этом нарушается закон плоских сечений, сечения некруглой формы при кручении искривляются – депланация поперечного сечения.
Э пюры касательных напряжений прямоугольного сечения.
;
, Jk и Wk — условно называют моментом инерции и моментом сопротивления при кручении. Wk= hb2,
Jk= hb3, Максимальные касательные напряжения max будут посредине длинной стороны, напряжения по середине короткой стороны: = max, коэффициенты: ,, приводятся в справочниках в зависимости от отношения h/b (например, при h/b=2, =0,246; =0,229; =0,795.
При расчете бруса на кручение (вала) требуется решить две основные задачи. Вопервых, необходимо определить напряжения, возникающие в брусе, и, вовторых, надо найти угловые перемещения сечений бруса в зависимости от величин внешних моментов.
решение для вала с круглым поперечным сечением (рис. 4.1 а).
Механизм деформирования бруса с круглым поперечным сечением можно представить в виде. Предполагая, что каждое поперечное сечение бруса в результате действия внешних моментов поворачивается в своей плоскости на некоторый угол как жесткое целое. Данное предположение, заложенное в основу теории кручения, носит название гипотезы плоских сечений.
Для построения эпюры крутящих моментов Mz применим традиционный метод сечений на расстоянии z от начала координат рассечем брус на две части и правую отбросим (рис. 4.1, б). Для оставшейся части бруса, изображенной на рис. 4.1, б, составляя уравнение равенства нулю суммы крутящих моментов Mz = 0, получим:
Mz = M. (4.1)
Поскольку сечение было выбрано произвольно, то можно сделать вывод, что уравнение (4.1) верно для любого сечения вала крутящий момент Mz в данном случае постоянен по всей длине бруса.
Далее двумя поперечными сечениями, как это показано на рис. 4.1, а, из состава бруса выделим элемент длиной dz, а из него свою очередь двумя цилиндрическими поверхностями с радиусами и + d выделим элементарное кольцо, показанное на рис. 4.1, в. В результате кручения правое торцевое сечение кольца повернется на угол d. При этом образующая цилиндра АВ повернется на угол и займет положение АВ . Дуга BВ равна с одной стороны, d, а с другой стороны dz. Следовательно,
. (4.2)
Если разрезать образовавшуюся фигуру по образующей и развернуть (рис. 4.1, г), то можно видеть, что угол представляет собой не что иное, как угол сдвига данной цилиндрической поверхности под действием касательных напряжений , вызванных действием крутящего момента. Обозначая
, (4.3)
относительный угол закручивания.
Этот угол представляет собой угол взаимного поворота двух сечений, отнесенный к расстоянию между ними. Величина аналогична относительному удлинению при простом растяжении или сжатии стержня.
Из совместного рассмотрения (4.2) и (4.3) и после некоторых преобразований, получим:
= . (4.4)
Подставляя выражение (4.4) в выражение закона Гука для сдвига (2.23), в данном случае выражение касательных напряжений принимает следующий вид:
= G , (4.5)
где касательные напряжения в поперечном сечении бруса. Парные им напряжения возникают в продольных плоскостях в осевых сечениях. Величину крутящего момента Mz можно определить через с помощью следующих рассуждений. Момент относительно оси z от действия касательных напряжений на элементарной площадке dF равен (рис. 4.2):
dM = dF.
Рис. 4.2
Проинтегрировав это выражение по площади поперечного сечения вала, получим: . (4.6)
Из совместного рассмотрения (4.5) и (4.6) получим:
. (4.7)
Откуда
. (4.8)
Величина G I называется жесткостью бруса при кручении.
Из (4.8), с учетом (4.3), интегрируя полученное выражение по параметру z, получим:
. (4.9)
Если крутящий момент Mz и жесткость G I по длине бруса постоянны, то из (4.9) получим:
, (4.10)
где (0) угол закручивания сечения в начале системы отсчета.
Для определения выражения напряжений, возвращаясь к формуле (4.5) и исключая из него , согласно (4.8), получим:
()= . (4.11)
Величина называется полярным моментом сопротивления поперечного сечения бруса в форме сплошного круга радиусом R. Определяется эта величина из следующих соображений:
(4.12)
Если же в брусе имеется внутренняя центральная полость радиусом r = , то для кольца
, (4.13)
где с = .
Установим теперь метод определения перемещений, основанный на вычислении потенциальной энергии деформации. Поставим задачу нахождения перемещений точек упругой системы по направлению действия приложенных к этой системе внешних сил.
Будем решать эту задачу в несколько приемов; сначала рассмотрим более простой случай (Рис.1), когда на балку в сечениях 1, 2, 3,... действуют только сосредоточенные силы
,
)... и т. д. Под действием этих сил балка прогнется по кривой
и останется в равновесии.
Прогибы сечений 1, 2, 3,..., в которых приложены силы ,
,
,..., обозначим
,
,
,... и т. д. Найдем один из этих прогибов, например
— прогиб сечения, в котором приложена сила
.
Переведем балку, не нарушая равновесия, из положения в смежное положение
, показанное на фиг. 328 пунктиром. Это можно сделать различными приемами: добавить новую нагрузку, увеличить уже приложенные и т. д.
Мы представим себе, что для перехода к смежному деформированному состоянию к силе
сделана бесконечно малая добавка
(Рис.1); чтобы при этом переходе не нарушать равновесия, будем считать, что эта добавка прикладывается статически, т. е. возрастает от нуля до окончательного значения медленно и постепенно.
2) Расчетная модель к теореме Кастильяно.
При переходе от состояния балки к состоянию
все нагрузки Р опустятся, значит, их потенциальная энергия уменьшится. Так как равновесие не нарушалось, то уменьшение, энергии нагрузок
целиком преобразовалось в увеличение потенциальной энергии деформаций балки dU. Величина
измеряется работой внешних сил при переходе балки из положения
в положение II: