Главная » Просмотр файлов » 1612728091-0a30a7783a7be2aec2f68b0436b9c3b2

1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859), страница 44

Файл №827859 1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (Савченков - Курс лекций по физиологии) 44 страница1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859) страница 442021-02-07СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 44)

В том случае, если возбуждение в СА не возникает, либо, например, при синоатриальной блокаде, не может перейти на желудочки, роль пейсмекера второго порядка берет на себя АВ-узел с частотой импульсов 40-60 в мин.



Рис. 21. Лигатуры Станниуса



В случае полной поперечной блокады предсердия и желудочки начинают сокращаться независимо друг от друга – предсердия в ритме СА-узла, а желудочки с частотой 30-40 в мин – с частотой, присущей пейсмекеру третьего порядка. Это явление называют диссоциацией.

Доказать, что синоатриальный узел является местом возникновения возбуждения в сердце (пейсмекером) можно или электрофизиологически, или опытами с ограниченным охлаждением синоатриального узла. Местное охлаждение вызывает замедление или остановку сердца, тогда как действие холода на другие участки сердца неэффективно. По мускулатуре предсердий возбуждение распространяется со скоростью около 1 м/ сек, и доходит до элементов атриовентрикулярного узла. При переходе через последний отмечается задержка возбуждения, так что на пучок Гисса возбуждение передается лишь через 0,04-0,05 сек после того, как оно дошло до атриовентрикулярного узла. В течение этой атриовентрикулярной задержки систола предсердий уже заканчивается. Таким образом, систола желудочков начинается только после окончания систолы предсердий.

Автоматия сердца. Сердце, даже после того, как оно вырезано из тела, может ритмически сокращаться некоторое время, Способность тканей возбуждаться под влиянием импульсов, возникающих в них самих, принято называть автоматизмом.

Автоматию сердца проще всего наблюдать на изолированном сердце лягушки, помещенном в физиологический раствор. При перфузии коронарных артерий можно видеть автоматию и на сердце теплокровного животного. Томский ученый Кулябко в 1902 г. впервые оживил сердце ребенка через несколько часов после смерти, Андреев - сердце взрослого через 2 суток после смерти.

Автоматия разных отделов сердца неодинакова. Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Существует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков проводящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульса с частотой до 60—80 в минуту (закон градиента автоматии Гаскелла).

Доказывается - лигатурами Станниуса или наблюдением за сокращением кусочков мышцы из разных отделов сердца. В нормальных физиологических условиях функционирует лишь один очаг автоматии - синоатриальный узел. Водители ритма, находящиеся в других отделах сердца, не генерируют импульсов. Их автоматия подавлена более частым ритмом синоатриального узла (способность к усвоению более частого ритма). После наложения лигатуры на предсердия наступает преавтоматическая пауза, после которой начинает проявляться автоматия атриовентрикулярного узла.

Ритмическое сокращение можно наблюдать и на трипсинизированном сердце (в культуре ткани). Отдельные мышечные клетки сокращаются и генерируют импульсы. При этом со временем клетки собираются в комочки и начинают сокращаться в ритме самого частого темпа, свойственного данным клеткам.

Электрофизиологические исследования, проведенные с помощью внутриклеточных микроэлектродов, показали, что в промежутке между двумя сокращениями в диастолу в автоматически возбуждающихся клетках происходит постепенное уменьшение мембранного потенциала (медленная диастолическая деполяризация). Когда разность потенциалов уменьшается до критической, внезапно возникает крутой сдвиг электрического заряда и генерируется ПД. Чем быстрее изменяется мембранный потенциал, тем чаще автоматический ритм. Считают, что это зависит от особенностей проницаемости поверхностной мембраны мышечного волокна, и от наличия в ней циклических биохимических процессов, ведущих к периодическому изменению проницаемости.

Электрическая активность клеток миокарда. В естественных условиях клетки миокарда находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно говорить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентра­ционным градиентом ионов К+.

Р ис. 22. Различные типы потенциалов действия сердечных клеток.



Потенциалы действия (ПД), зарегистрированные в разных отделах сердца при помощи внутриклеточных микроэлектродов, существенно различаются по форме, амплитуде и длительности (рис. 22, А). На рис. 22, Б схематически показан ПД одиночной клетки миокарда желудочка. Для возникновения этого потенциала потребовалось деполяризовать мембрану на 30 мВ. В ПД различают следующие фазы: быструю начальную деполяризацию — фаза 1; медленную реполяризацию, так называемое плато — фаза 2; быструю реполяризацию — фаза 3; фазу покоя — фаза 4. Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного по­тенциала (с —90 до +30 мВ).

В клетках рабочего миокарда (предсердия, желудочки) мембранный потенциал (в интервалах между следующими друг за другом ПД) поддерживается на более или менее постоянном уровне. Однако в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяризация (фаза 4), при достижении критического уровня которой (при­мерно —50 мВ) возникает новый ПД (см. рис. 22, Б). На этом механизме основана авторитмическая активность указанных сердеч­ных клеток.

Биологическая активность этих клеток имеет и другие важные особенности: 1) малую крутизну подъема ПД; 2) медленную реполяризацию (фаза 2), плавно переходящую в фазу быстрой реполяризации (фаза 3), во время которой мембранный потенциал достигает уровня —60 мВ (вместо —90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастолической депо­ляризации. Сходные черты имеет электрическая активность клеток предсердно-желудочкового узла, однако скорость спонтанной диастолической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла, соответственно ритм их потенциальной автоматической активности меньше.

Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастолической деполяризации и медленной восходящей фазы ПД клеток синусно-предсердного узла ведущую роль играют кальциевые каналы. Они проницаемы не только для ионов Са2+, но и для ионов Na+. Быстрые натриевые каналы не принимают участия в генерации ПД этих клеток.

Способность клеток миокарда в течение жизни человека находиться в состоянии непрерывной ритмической активности обеспе­чивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na+, а в клетку возвращаются ионы К+. Ионы Са2+, проникшие в цитоплазму, поглощаются эндоплазматической сетью. Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается, вследствие чего уменьшается электрическая и механическая активность миокардиальных клеток.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца: 1) ритмическую генерацию импульсов (потенциалов действия); 2) необходимую последовательность (координацию) сокращений предсердий и желудочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

Экстрасистолы. Сокращение (систола) миокарда продолжается около 0,3 с, что по времени примерно совпадает с рефрактерной фазой. Следова­тельно, в период сокращения сердце неспособно реагировать на другие раздражители. Наличие длительной рефрактерной фазы пре­пятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что привело бы к невозможности осуществления сердцем нагнетательной функции.

Раздражение, нанесенное на миокард в период расслабления (диастолы), когда его возбудимость частично или полностью восстановлена, вызывает внеочередное сокращение сердца — экстрасистолу. Наличие или отсутствие экстрасистол, а также их характер определяется при регистрации электрокардиограммы.

При некоторых патологических состояниях сердца правильный ритм эпизодически или регулярно нарушается внеочередной систолой, которая называется экстрасистолой.

Если внеочередное возбуждение возникает (или в эксперименте мы раздражаем) в области синоатриального узла, то в случае, когда этот импульс попадает в период после окончания рефрактерности синусового возбуждения, наступает внеочередное возбуждение синусного узла и внеочередное сокращение всего сердца (синусовая или предсердная экстрасистола). Пауза, следующая за такой экстрасистолой, длится столько же времени, сколько обычная пауза, так как после внеочередного возбуждения синусный узел автоматически генерирует очередной импульс с обычным ритмом.

Если же внеочередное возбуждение возникает в водителях ритма правого или левого желудочков, или в атриовентрикулярном узле, то такое возбуждение не отражается на автоматии синоатриального узла, и этот узел своевременно посылает свой очередной импульс, который достигает желудочков, когда они еще находятся в рефрактерном состоянии после экстрасистолы. Поэтому миокард не отвечает на очередной импульс из синусного узла, и ждет следующего больший, чем обычно, период времени. Возникает т.н. компенсаторная пауза, наличие которой является отличительной особенностью атриовентрикулярной (желудочковой) экстрасистолы.

Рис. 23. Предсердная (I) и атриовентрикулярная (II) экстрасистолы.

При экстрасистолах, возникающих в правом или левом желудочках, форма их на ЭКГ разная и не похожа на нормальный желудочковый комплекс. Если же экстрасистола возникает из атриовентрикулярного узла, то форма QRST остается обычной. Однако в этом случае меняется форма зубца Р. Он направлен вниз, так как возбуждение из атриовентрикулярного узла на предсердия распространяется снизу. Кроме того, в зависимости от того, в какой части узла возникает возбуждение, зубец Р может или предшествовать, или сливаться, или быть после желудочкового комплекса. Источником экстрасистолии могут быть патологические очаги в различных отделах сердца, или импульсы из нервной системы.

ЛЕКЦИЯ 17. ВНЕШНИЕ ПРОЯВЛЕНИЯ РАБОТЫ СЕРДЦА, СПОСОБЫ ИХ РЕГИСТРАЦИИ. ФУНКЦИОНАЛЬНЫЕ ПОКАЗАТЕЛИ ДЕЯТЕЛЬНОСТИ ЕРДЦА.

17-1. Электрокардиография: генез зубов, сегментов и интервалов, их параметры, значение ЭКГ для клиники.



Охват возбуждением огромного количества клеток рабочего миокарда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позво­ляют регистрировать электрические потенциалы сердца с поверх­ности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнтховеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электрокардиографии, а регистрируемая с ее помощью кривая называется электрокардиограммой (ЭКГ). Электрокардиография широко при­меняется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ.

В настоящее время пользуются специальными приборами — электрокардиографами с электронными усилителями и осциллографами.

Вследствие определенного положения сердца в грудной клетке и своеобразной формы тела человека электрические силовые линии, возникающие между возбужденными (—) и невозбужденными (+) участками сердца, распределяются по поверхности тела неравномерно. По этой причине в зависимости от места приложения элек­тродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три так называемых стандартных отведений от конечностей: I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога (рис. 24). Кроме того, регистрируют три униполярных усиленных отведения по Гольдбергеру: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один, и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу. Вильсоном предложена регистрация шести грудных отведений.

.

Характеристики

Тип файла
Документ
Размер
8,6 Mb
Тип материала
Высшее учебное заведение

Список файлов лекций

Свежие статьи
Популярно сейчас
Зачем заказывать выполнение своего задания, если оно уже было выполнено много много раз? Его можно просто купить или даже скачать бесплатно на СтудИзбе. Найдите нужный учебный материал у нас!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6439
Авторов
на СтудИзбе
306
Средний доход
с одного платного файла
Обучение Подробнее