1612728091-0a30a7783a7be2aec2f68b0436b9c3b2 (827859), страница 41
Текст из файла (страница 41)
Более сложным является патогенез лейкоцитоза, возникающего нередко во второй половине беременности. При этом в лейкоцитарной формуле нередко отмечается сдвиг влево, связанный с увеличением процента палочкоядерных нейтрофилов. Считается, что это зависит от изменения гормонального баланса у беременных, что наряду с перераспределением крови приводит к описанным изменениям.
Своеобразные изменения претерпевает белая кровь в разные стадии адаптационного синдрома. В стадии мобилизации обычно отмечается лейкопения, связанная со значительным уменьшением числа лимфоцитов и эозинофилов. В стадии резистентности состав крови обычно не меняется. При длительном воздействии раздражителя (стадии истощения) количество лимфоцитов и эозинофилов вновь снижается при одновременном развитии нейтрофильного лейкоцитоза. Определенное значение в развитии этих изменений имеют глюкокортикоиды, влияющие на кроветворение.
Лейкопении встречаются только при патологических состояниях. Особенно тяжелая лейкопения может наблюдаться в случае поражения костного мозга — острых лейкозах и лучевой болезни. При этом изменяется функциональная активность лейкоцитов, что приводит к нарушениям в специфической и неспецифической защите, попутным заболеваниям, часто инфекционного характера, и даже смерти.
Лейкопоэз. Все лейкоциты образуются в красном костном мозге из единой стволовой клетки, однако родоначальницей миелопоэза является бипотенциальная колониеобразующая единица гранулоцитарно-моноцитарная (КОЕ-ГМ) или клетка-предшественница. Для ее роста и дифференцировки необходим особый колониестимулирующий фактор (КСФ), вырабатываемый у человека моноцитарно-макрофагальными клетками, костным мозгом и лимфоцитами.
КСФ является гликопротеидом и состоит из двух частей — стимулятора продукции эозинофилов (Эо-КСФ) и стимулятора продукции нейтрофилов и моноцитов (ГМ-КСФ), относящихся к ранним гемопоэтическим ростовым факторам. Содержание ГМ-КСФ стимулируется Т-хелперами и подавляется Т-супрессорами. На более поздних этапах на лейкопоэз влияют гранулоцитарный колониестимулирующий фактор — Г-КСФ (способствует развитию нейтрофилов) и макрофагальный колониестимулирующий фактор — М-КСФ (приводит к образованию моноцитов), являющиеся позднодействующими специфическими ростовыми факторами.
Из костного мозга и отдельных видов лейкоцитов (гранулоцитов и агранулоцитов) выделен комплекс полипептидных факторов, выполняющих функции специфических лейкопоэтинов.
Важная роль в регуляции лейкопоэза отводится интерлейкинам. В частности, ИЛ-3 не только стимулирует гемопоэз, но и является фактором роста и развития базофилов. ИЛ-5 необходим для роста и развития эозинофилов. Многие интерлейкины (ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-7 и др.) являются факторами роста и дифференцировки Т- и В-лимфоцитов.
Лейкоциты являются наиболее «подвижной» частью крови, быстро реагирующей на различные изменения в окружающей среде и организме развитием лейкоцитоза, что обеспечивается существованием клеточного резерва. Известны два типа гранулоцитарных резервов — сосудистый и костномозговой. Сосудистый гранулоцитарный резерв представляет собой большое количество гранулоцитов, расположенных вдоль стенок сосудистого русла, откуда они мобилизуются при повышении тонуса симпатического отдела автономной (вегетативной) нервной системы.
Количество клеток костномозгового гранулоцитарного резерва в 30—50 раз превышает их количество в кровотоке. Мобилизация этого резерва происходит при инфекционных заболеваниях, сопровождается сдвигом лейкоцитарной формулы влево и обусловлена в основном воздействием эндотоксинов.
Своеобразные изменения претерпевают лейкоциты в разные стадии адаптационного синдрома, что обусловлено действием гормонов гипофиза (АКТГ) и надпочечника (адреналина, кортизона, дезоксигидрокортизона). Уже через несколько часов после стрессорного воздействия развивается лейкоцитоз, который обусловлен выбросом нейтрофилов, моноцитов и лимфоцитов из депо крови. При этом число лейкоцитов не превышает 16—18 тыс. в 1 мкл. В стадии резистентности число и состав лейкоцитов мало отличаются от нормы. В стадии истощения развивается лейкоцитоз, сопровождающийся увеличением числа нейтрофилов и снижением числа лимфоцитов и эозинофилов.
15. 4. Роль нервной системы и гуморальных факторов в Регуляции клеточного состава крови.
Роль нервной системы. Участие НС в перераспределительных реакциях крови подтверждается опытами, в которых анестезия предотвращает такие реакции, как возникновение местного лейкоцитоза при болевом раздражении, раздражении брюшины, механическом раздражении слизистой желудка, поверхности печени и т.п.. Четкие изменения состава периферической крови отмечаются и при введении медиаторов НС (адреналина и ацетилхолина). Так, инъекция адреналина приводит к возникновению кратковременного лейкоцитоза.
При раздражении гипоталамуса стимуляция ядер симпатической НС приводит к ретикулоцитозу и эритропении, а разрушение этих ядер тормозит регенерацию крови после кровопотери. Гипоталамус участвует в регуляции образования гемопоэтинов.
Кора больших полушарий также оказывает свое влияние на состав крови и кроветворения. При удалении одного или обеих полушарий у животных развивается анемия и умеренно выраженный нейтрофильный лейкоцитоз. Одновременно тормозится регенерация крови в ответ на постгеморрагическую или гемолитическую анемию. При неврозах в клинике и в эксперименте могут развиваться анемии. Возможна выработка условных рефлексов в системе крови (условно-рефлекторный пищевой лейкоцитоз). Все эти исследования, хотя и свидетельствуют о возможном влиянии ЦНС на систему крови, но не раскрывают путей реализации этих воздействий. Можно полагать, что они осуществляются посредством изменения функционального состояния межуточного мозга, что приводит к изменениям деятельности эндокринных желез, обмена веществ, сосудистого тонуса и т.п..
Несомненное влияние на систему крови оказывают и нижележащие отделы НС. Это доказано многочисленными экспериментами с перерезкой спинного мозга на различных уровнях. При перерезке шейного и грудного отделов наблюдается развитие анемии, ретикулоцитопении и нейтрофильного лейкоцитоза. В костном мозге в этих случаях снижается количество эритробластов.
Нервные волокна, регулирующие кроветворение, выходят из спинного мозга на уровне D3-L3 сегментов. Симпатическая иннервация стимулирует кроветворение, парасимпатическая тормозит. Однако, при определенных условиях эти эффекты модифицируются и оба отдела ВНС могут оказывать на кроветворение одинаковое действие. Можно считать доказанным, что парасимпатикус влияет более на лейкопоэз, чем на эритропоэз.
Следует отметить, что в особой зависимости от нормального функционального состояния НС находится эритрон. Выключение определенных рефлексогенных зон (синокаротидная, аортальная), денервация внутренних органов (печень, селезенка, почки), перерезка некоторых периферических нервов (седалищный, бедренный) закономерно вызывают анемию у экспериментальных животных.
Существует два пути регулирующего влияния НС на систему крови - прямой и косвенный с участием гуморальных посредников. Подтверждением наличия прямого пути является наличие иннервации костного мозга, причем костный мозг является и источником афферентной импульсации, т.е. связь двусторонняя. Вместе с тем велика и роль гуморальных посредников между НС и системой крови (опыты на парабионтах). Эти гуморальные стимуляторы кроветворения получили наименование гемопоэтины. Под гемопоэтинами подразумевают вещества, которые вырабатываются в организме и обладают способностью стимулировать кроветворение. В зависимости от точки приложения их действия различают эритропоэтины, лейкопоэтины и тромбопоэтины.
Роль желез внутренней секреции в регуляции системы крови.
Наряду со специфической регуляцией системы крови, которая осуществляется посредством гемопоэтинов, и, возможно, веществ с ингибиторными свойствами, имеется немало данных об участии в этом процессе различных желез внутренней секреции.
Гипофиз. Установлено, что гипофизэктомия приводит к анемии и гипоплазии костного мозга. Несомненное влияние на систему крови оказывают и отдельные гормоны гипофиза (АКТГ и СТГ). Применение СТГ приводит к усилению пролиферации всех костномозговых элементов с нарастанием в крови числа эритроцитов и лейкоцитов на единицу веса. При этом СТГ действует непосредственно на костный мозг, а АКТГ - через глюкокортикоиды.
Надпочечники. О возможности влияния глюкокортикоидов на систему крови свидетельствуют многочисленные клинические наблюдения, указывающие на тенденцию к эритроцитозу и нейтрофильному лейкоцитозу у больных с синдромом Иценко-Кушинга. Применение глюкортикоидов у больных с не гематологическими заболеваниями сопровождается увеличением числа ретикулоцитов, эритроцитов и лейкоцитов. Аналогичные изменения обнаруживаются у животных при введении кортизона. В то же время адреналэктомия приводит к развитию анемии и увеличению в крови абсолютного количества лимфоцитов. Все эти эффекты связаны со способностью глюкокортикоидов стимулировать эритро- и гранулопоэз и тормозить продукцию лимфоцитов из-за развивающейся гипоплазии лимфоидного аппарата. Эозинопения, нередко отмечающаяся при введении глюкокортикоидов, обычно связывается с перераспределением эозинофилов. Длительное применение АКТГ может приводить к гипоплазии костного мозга из-за торможения митотической активности костномозговых элементов.
Действие минералокортикоидов на систему крови осуществляется через изменения объема циркулирующей жидкой части крови. Определенные изменения состава крови возникают и при введении гормонов мозгового слоя надпочечников (адреналина и норадреналина). Они выражаются в кратковременной полиглобулии при отсутствии существенных нарушений в лейкоцитарной формуле. Развитие полиглобулии обусловлено перераспределением форменных элементов, уменьшением количества депонированных клеток крови в печени, селезенке, легких и других паренхиматозных органах при одновременном усилении выхода зрелых сегментоядерных нейтрофилов из синусов костного мозга в кровь.
Половые железы. Половые различия в составе крови известны. Показано, что применение женских половых гормонов, эстрогенов, у людей и животных приводит к развитию панцитопении, особенно анемии. Применение малых доз эстрогенов оказывает стимулирующее действие на гранулоцитопоэз, при больших дозах отмечается аплазия гранулопоэза и лимфопоэза.
Введение мужских половых гормонов, андрогенов, оказывает противоположное действие, выражающееся в появлении полиглобулии и гиперплазии костного мозга.
Щитовидная железа. Менее определенное действие на систему крови оказывают гормоны щитовидной железы. При гиперфункции ее нередко развивается лейкопения, связанная с уменьшением абсолютного количества нейтрофилов. Абсолютное же количество лимфоцитов увеличивается, одновременно с увеличением размеров тимуса и лимфатических органов.
Более закономерным является развитие анемии при гипофункции щитовидной железы. Количество лейкоцитов и тромбоцитов не меняется. Изменения кроветворения при нарушениях функции щитовидной железы не являются специфическими. Их появление связано с изменением темпа обменных процессов в организме, нарушением витаминного баланса и, возможно, нарушением всасывания необходимых для кроветворения веществ в ЖКТ.
Зобная железа. Установлено, что зобная железа имеет непосредственное отношение к регуляции развития лимфоидного аппарата. Удаление тимуса у новорожденных мышей приводит к задержке развития лимфоидного аппарата вплоть до его атрофии. Одновременно у животных отмечается повышенная чувствительность к инфекции в связи со снижением способности вырабатывать антитела. Менее изученным является влияние зобной железы на эритропоэз. В физиологических условиях у взрослых людей тимус не может принимать существенного участия в регуляции кроветворения из-за возрастной инволюции этой железы.
Прочие регулирующие влияния на систему крови.
Внутренние органы. Помимо эндокринных желез, к регуляции системы крови имеют отношение такие органы, как селезенка и легкие. Они являются депо крови, в селезенке происходит разрушение элементов крови. При этом в селезенке разрушаются только старые, качественно измененные клетки. Большую роль играет селезенка и в стимуляции эритропоэза (продукты распада эритроцитов стимулируют созревание новых клеток) и лейкопоэза (удаление селезенки приводит к лимфоцитозу, эозинофилии и моноцитозу), а также тромбоцитопоэза.