saveliev1 (797913), страница 73

Файл №797913 saveliev1 (И.В. Савельев - Курс общей физики) 73 страницаsaveliev1 (797913) страница 732019-12-23СтудИзба
Просмтор этого файла доступен только зарегистрированным пользователям. Но у нас супер быстрая регистрация: достаточно только электронной почты!

Текст из файла (страница 73)

волны. Стоячие волны в ограниченной среде должны удовлетворять определенным условиям (таким условием может быть, например, требование, чтобы на границе среды имела место пучность волны). Эти условия налагают о~раничения 471 на возможные длины стоячих волн или частоты коле. баний. Известно, например, что в струне с закрепленными концами возможны только стоячие волны с длиной Л, удовлетворяющей условию 1= пЛ/2, где 1 — пляпа струны, а п — целое число, Таким образом, тепловое движение в кристаллах может быть представлено как наложение стоячих волн с целым набором (спектромг дискретных частот. Квантовая теория теплоемкости кристаллов находится в хорошем согласии с опытными данными, в частности, для высоких температур она приводит к выраже нию (141.1).

ГЛАВА ХЧ! ЖИДКОЕ СОСТОЯНИЕ 5 142. Строение жидкостей Жидкое состояние, занимая промежуточное положение между газами и кристаллами, сочетает в себе некоторые черты обоих этих состояний. В частности, для жидкостей, как н для кристаллических тел, характерно наличие определенного объема, н вместе с тем жидкость, подобно газу, принимает форму того сосуда, в котором она находится. Далее, для кристаллического состояния характерно упорядоченное расположение частиц (атомов или молекул), в газах в этом смысле царит полный хаос. Согласно рентгепографическим исследованиям, в отношении характера расположения частиц жидкости также занимают промежуточное положение. В расположении частиц жидкости наблюдается так называемый б л и ж н и й п о р я д о к. Это означает, что по отношению к любой частице расположение ближайших к ней соседей является упорядоченным.

Однако по мере удаления от данной частицы расположение по отношению к ней других частиц становится все менее упорядоченным и довольно быстро порядок в расположении частиц полностью исчезает. В кристаллах имеет место дальний п о р я д о к — упорядоченное расположение частиц по отношению к любой частице наблюдается в пределах значительного объема. Наличие в жидкостях ближнего порядка служит причиной того, что структуру жидкостей называют квази- кристаллической (кристаллоподобной). Из-за отсутствия дальнего порядка жидкости (за исключением так называемых жидких кристаллов) не 473 обнаруживают анизотропии, характерной для кристаллов с их правильным расположением частиц.

В жидкостях с удлиненными молекулами наблюдает. ся одинаковая ориентация молекул в пределах значительного объема, чем обусловливается анизотропия оптических и некоторых других свойств. Такие жидкости получили название жидких кристаллов. У них упорядочена только ориентация молекул, взаимное же расположение молекул, как и в обычных жидкостях, дальнего порядка не обнаруживает. Промежуточным положением жидкостей обусловлено то обстоятельство, что жидкое состояние оказывается особенно сложным по своим свойствам. Поэтому его теория гораздо менее развита, чем теория кристаллического и, особенно, газообразного состояний.

До сих пор нет вполне законченной и общепризнанной теории жидкостей. Значительные заслуги в разработке ряда проблем теории жидкого состояния принадлежат совет скому ученому Я. И. Френкелю. Согласно Френкелю, тепловое движение в жидкостях имеет следующий характер. Каждая молекула в течение некоторого времени колеблется около определенного положения равновесия.

Время от времени молекула меняет место равновесия, скачком перемещаясь в новое положение, отстоящее от предыдущего на расстоянии порядка размеров самих молекул. Таким образом, молекулы лишь медленно перемещаются внутри жидкости, пребывая часть времени около определенных мест. По образному выражению Я.

И. Френкеля, молекулы странствуют по всему объему жидкости, ведя кочевой образ жизни, при котором кратковременные переезды сменяются относительно длинными периодами оседлой жизни. Длительности этих стоянок весьма различны и беспорядочно чередуются друг с другом, но средняя длительность колебаний около того же положения равновесия оказывается у каждой жидкости определенной величиной, резко убывающей при повышении температуры. В связи с этим при повышении температуры сильно воз. растает подвижность молекул, что в свою очередь влечет за собой уменьшение вязкости жидкостей. Существуют твердые тела, которые во многих отношениях оказываются ближе, к жидкостям, чем к кристаллам. Такие тела, называемые аморфными, не обна.

474 руживают анизотропии. В расположении их частиц имеется, как и у жидкостей, только ближний порядок, Переход от аморфного твердого тела к жидкости при нагревании осуществляется непрерывно, в то время как переход от кристалла к жидкости совершается скачком (подробнее об этом будет сказано в 5 !49). Все это дает основание рассматривать аморфные твердые тела как переохлажденные жидкости, частицы которых вследствие сильно возросшей вязкости имеют ограниченную подвижность. Типичным примером аморфного твердого тела слу.

жит стекло. К числу аморфных тел относятся также смо. лы, битумы и т. п. 5 143. Поверхностное натяжение Молекулы жидкости располагаются настолько близко друг к другу, что силы притяжения между ними имеют значительную величину. Поскольку взаимодействие быстро убывает с расстоянием (см.

кривую на рис. 264), начиная с некоторого расстояния силами притяжения между молекулами можно пренебречь, Это расстояние г, как мы уже знаем (см. 3 118), называется радиусом молекулярного действия, а сфера радиуса г называется сферой молекулярного действия. Радиус молекуляр- ного деиствия имеет величину порядка нескольких эффективных диаметров молекулы. Каждая молекула испытывает притяжение со стороны всех соседних с ней молекул, находящихся в пределах сферы молеку- ра лярного действия, центр которой совпадает с данной молекулой.

Равнодействующая всех этих сил для молекулы, находящейся от поверхности жидкости на расстоянии, превышающем г, очевидно, в среднем равна нулю (рис. 312). Иначе обстоит дело, если молекула находится на расстоянии от поверхности, меньшем чем г. Так как плотность пара (или газа, с которым граничит жидкость) во много раз меньше плотности жидкости, выступающая за пределы жидкости часть сферы молекулярного действия будет менее заполнена 476 молекулами, чем остальная часть сферы. В результате на каждую молекулу, находящуюся в поверхностном слое толщиной г, будет действовать сила, направленная внутрь жидкости.

Величина этой силы растет в направлении от внутренней к наружной границе слоя. Переход молекулы из глубины жидкости в поверхностный слой связан с необходимостью совершения работы против действующих в поверхностном слое сил. Эта работа совершается молекулой за счет запаса ее кинетической энергии и идет на увеличение потенциальной энергии молекулы, подобно тому как работа, совершаемая летящим вверх телом против сил земного тяготения, идет на увеличение потенциальной энергии тела.

При обратном переходе молекулы в глубь жидкости потенциальная энергия, которой обладала молекула в поверхностном слое, переходит в кинетическую энергию молекулы. Итак, молекулы в поверхностном слое обладают дополнительной потенциальной энергией. Поверхностный слой в целом обладает дополнительной энергией, которая входит составной частью во внутреннюю энергию жидкости. Поскольку положение равновесия соответствует минимуму потенциальной энергии, жидкость, предоставленная самой себе, будет принимать форму с минимальной поверхностью, т.

е. форму шара. Обычно мы наблюдаем не жидкости, «предоставленные самим себе», а жидкости, подверженные действию сил земного тяготения, В этом случае жидкость принимает форму, соответствующую минимуму суммарной энергии — энергии в поле сил тяготения и поверхностной энергии. При увеличении размеров тела объем растет как куб линейных размеров, а поверхность в только как квадрат.

Поэтому пропорциональная объему тела энергия в поле тяготения изменяется с размерами тела быстрее, чем поверхностная энергия. У малых капель жидкости преобладающую роль играет поверхностная энергия, вследствие чего такие капли имеют форму, близкую к сферической. Большие капли жидкости сплющиваются под действием сил тяготения, несмотря на то, что поверхностная энергия при этом возрастает. Большие массы жидкости принимают форму сосуда, в который они налиты, с горизонтальной свободной поверхностью. Я76 Из-за наличия поверхностной энергии жидкость обнаруживает стремление к сокращению своей поверхности. Жидкость ведет себя так, как если бы она была заключена в упругую растянутую пленку, стремящуюся сжаться. Следует иметь в виду, что никакой пленки, ограничиваюшей жидкость снаружи, на самом деле нет. Поверхностный слой состоит из тех хкс молекул, что и вся жидкость, и взаимодействие между молекулами имеет в поверхностном слое тот же характер, что и внутри жидкости.

Дело заключается лишь в том, что молекулы в поверхностном слое обладают дополнительной энергией по сравнению с молекулами внутри жидкости. Выделим мысленно часть поверхности жидкости, ограниченную замкнутым контуром. Тенденция этого участка к сокращению приводит к тому, что он действует на граничащие с ним участки с силами, распределенными по всему контуру (по третьему закону Ньютона внешние участки поверхностного слоя действуют на рассматриваемую часть поверхности с силами такой же величины, но противоположного направления). Эти силы называются силами поверхностного натяжения.

Направлена сила паверхностого натяжения по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует. Обозначим силу поверхно. стного натяжения, приходящуюся на единицу длины кон. ~-- -~ лг тура, через а. Эту величину называют коэффициентом поверхностного натяж е н и я.

Измеряют ее в нью- Рис. 3!3. тонах на метр (в СИ) или в динах на сантиметр (в СГС-системе). Величина коэффициента поверхностного натяжения зависит от природы жидкости и от условий, в которых она находится, в частности от температуры. Рассмотрим какой-либо процесс, в ходе которого поверхность жидкости возрастает за счет действия внешних сил. Это происходит„ например, при вытекании жидкости из узкой трубки (рис. 313).

Характеристики

Тип файла
DJVU-файл
Размер
4,46 Mb
Тип материала
Предмет
Учебное заведение
Неизвестно

Список файлов книги

Свежие статьи
Популярно сейчас
Как Вы думаете, сколько людей до Вас делали точно такое же задание? 99% студентов выполняют точно такие же задания, как и их предшественники год назад. Найдите нужный учебный материал на СтудИзбе!
Ответы на популярные вопросы
Да! Наши авторы собирают и выкладывают те работы, которые сдаются в Вашем учебном заведении ежегодно и уже проверены преподавателями.
Да! У нас любой человек может выложить любую учебную работу и зарабатывать на её продажах! Но каждый учебный материал публикуется только после тщательной проверки администрацией.
Вернём деньги! А если быть более точными, то автору даётся немного времени на исправление, а если не исправит или выйдет время, то вернём деньги в полном объёме!
Да! На равне с готовыми студенческими работами у нас продаются услуги. Цены на услуги видны сразу, то есть Вам нужно только указать параметры и сразу можно оплачивать.
Отзывы студентов
Ставлю 10/10
Все нравится, очень удобный сайт, помогает в учебе. Кроме этого, можно заработать самому, выставляя готовые учебные материалы на продажу здесь. Рейтинги и отзывы на преподавателей очень помогают сориентироваться в начале нового семестра. Спасибо за такую функцию. Ставлю максимальную оценку.
Лучшая платформа для успешной сдачи сессии
Познакомился со СтудИзбой благодаря своему другу, очень нравится интерфейс, количество доступных файлов, цена, в общем, все прекрасно. Даже сам продаю какие-то свои работы.
Студизба ван лав ❤
Очень офигенный сайт для студентов. Много полезных учебных материалов. Пользуюсь студизбой с октября 2021 года. Серьёзных нареканий нет. Хотелось бы, что бы ввели подписочную модель и сделали материалы дешевле 300 рублей в рамках подписки бесплатными.
Отличный сайт
Лично меня всё устраивает - и покупка, и продажа; и цены, и возможность предпросмотра куска файла, и обилие бесплатных файлов (в подборках по авторам, читай, ВУЗам и факультетам). Есть определённые баги, но всё решаемо, да и администраторы реагируют в течение суток.
Маленький отзыв о большом помощнике!
Студизба спасает в те моменты, когда сроки горят, а работ накопилось достаточно. Довольно удобный сайт с простой навигацией и огромным количеством материалов.
Студ. Изба как крупнейший сборник работ для студентов
Тут дофига бывает всего полезного. Печально, что бывают предметы по которым даже одного бесплатного решения нет, но это скорее вопрос к студентам. В остальном всё здорово.
Спасательный островок
Если уже не успеваешь разобраться или застрял на каком-то задание поможет тебе быстро и недорого решить твою проблему.
Всё и так отлично
Всё очень удобно. Особенно круто, что есть система бонусов и можно выводить остатки денег. Очень много качественных бесплатных файлов.
Отзыв о системе "Студизба"
Отличная платформа для распространения работ, востребованных студентами. Хорошо налаженная и качественная работа сайта, огромная база заданий и аудитория.
Отличный помощник
Отличный сайт с кучей полезных файлов, позволяющий найти много методичек / учебников / отзывов о вузах и преподователях.
Отлично помогает студентам в любой момент для решения трудных и незамедлительных задач
Хотелось бы больше конкретной информации о преподавателях. А так в принципе хороший сайт, всегда им пользуюсь и ни разу не было желания прекратить. Хороший сайт для помощи студентам, удобный и приятный интерфейс. Из недостатков можно выделить только отсутствия небольшого количества файлов.
Спасибо за шикарный сайт
Великолепный сайт на котором студент за не большие деньги может найти помощь с дз, проектами курсовыми, лабораторными, а также узнать отзывы на преподавателей и бесплатно скачать пособия.
Популярные преподаватели
Добавляйте материалы
и зарабатывайте!
Продажи идут автоматически
6417
Авторов
на СтудИзбе
307
Средний доход
с одного платного файла
Обучение Подробнее